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The objective of this study was to determine if Coenzyme Q10 (also known as ubiquinone) acting 

as an antioxidant, would protect against free radical damage to cell membranes that can cause 

cancer.  Caco-2 cells were fed experimental media with and without different concentrations of 

iron (200, 400 or 800 uM) and with and without CoQ10 (400 uM).  The presence of 

malondialdehyde (MDA) and 4-hydroxynonenals (4-HNE or HNE) were assayed as an indicator 

of lipid peroxidation.  The results were standardized for the amount of protein in the cell culture 

well.  Iron was not a significant cause of lipid peroxidation in Caco-2 cells.  CoQ10 appeared to 

significantly reduce the amount of MDA and 4-HNE in the media and cells combined regardless 

of the presence of iron, but the analysis did not include the vehicle, mineral oil, for CoQ10 due to 

a limited n.  Therefore, the mineral oil with CoQ10 may be considered protective from free 

radical damage in the colon.         
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CHAPTER ONE 

Introduction to the Study 

Introduction 

 Nutrition has important effects on the health and well-being of humans.  Optimal 

nutritional practices can not only enhance an individual’s health but also protect against different 

types of cancers (American Cancer Society 2002).  Nutritional status has an influence on how 

cancers develop and progress (American Cancer Society 2002).  Ever since the first population 

studies linked diets rich in vegetables, fruits and grains to low rates of cancer, scientists have 

been trying to find out how these foods provide their protective effects (Bright-See 1988; AICR 

1998).   

 

 Colon cancer is influenced by nutrition (Thun et al. 1992; American Cancer Society 

2000; 2002).  Possible risk factors for colon cancer include physical inactivity, a high fat and/or a 

low-fiber diet, as well as inadequate intake of fruits and vegetables (Thun et al. 1992; American 

Cancer Society 2000; 2002).  Other nutrients, such as iron, increase the risk of colon cancer by 

damaging cell membranes (Bird et al. 1996).  High iron consumption has been proposed to 

increase the risk of colon cancer (Younes et al. 1990; Bird et al. 1996; Lund et al. 2001; Nelson 

and Davis 1994).  Scientific research on prevention of colon cancer should include research on 

those nutrients that are protective against colon cancer.    

 

 Predictions published by the American Cancer Society suggest that about 1,284,900 new 

cancer cases are expected to be diagnosed in 2002.  This year about 555,500 Americans are 

expected to die of cancer, more than 1,500 people a day.  About one-third of these expected 
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cancer deaths would be related to nutrition, physical inactivity, obesity, and other lifestyle factors 

that could be prevented (American Cancer Society 2002).  This shows that it is important to 

understand the direct connection between specific nutrients and cancer and take appropriate 

actions based upon that knowledge.  In the past, genetics (nature) and nutrition (nurture) were 

considered two competing forces in the development of the individual (Simopoulos 1999).  

Today we understand that it is the interaction of genetics and the environment, including diet and 

lifestyle that provides the foundation for health and disease (Simopoulos 1999 and 1995).   

 

 Humans today live in a nutritional environment that differs from that upon which our 

genetic constitution was selected.  Archaeological findings and historical research indicate that a 

Paleolithic Cave Person’s diet was rich in antioxidants and minerals that influence our evolution 

and genetic profile (Lane 1999).  Rapid changes in our diet, particularly over the last 150 years, 

have altered both the type and amount of fatty acids that we consume and the antioxidant content 

of our diet.  These dietary changes promote the development of chronic diseases such as 

arteriosclerosis, essential hypertension, obesity, diabetes, and many cancers (Simopoulos 1999).   

 

 Colon cancer in particular can develop as a result of dietary changes or nutritional 

changes in the human body (Bird et al. 1996).  High dietary intakes of iron may enhance the risk 

of colon cancer, due to the ability of iron to generate free radicals in vivo (Bird et al. 1996).  

Excess levels of dietary iron have serious consequences such as enhanced lipid peroxidation, 

subsequent cellular damage and carcinogenesis resultant from an increase of hydroxyl radical 

production (Younes et al. 1990; Nelson 1992; Sobotka et al. 1996). 
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A direct relationship between the amount of iron ingested and the frequency of colon 

cancer has been observed in animal studies (Porres 1999).  Researchers have examined the 

susceptibility of pigs to the oxidative stress caused by a moderately high dietary iron intake 

(Porres 1999).  One goal of their experiment was to test the hypothesis that ingestion of 

moderately high amounts of iron could produce oxidative stress in the colon of the pig.  Elevated 

amounts of dietary iron fed to these animals was associated with a significant increase in colon 

lipid peroxidation (Porres 1999) and that oxidative stress was related to increased risk of colon 

cancer (Porres 1999; Stone and Papas 1997).  Lipid peroxidation is recognized as a mechanism 

of cellular injury or oxidative stress (Blache et al. 1999).  This stress process leads to the 

destruction of membrane lipids and the production of lipid peroxides and their by-products such 

as aldehydes (Blache et al. 1999).    

  

 Oxidative stress is becoming an important hypothesis to explain the genesis of several 

pathologies, including cancer, atherosclerosis and aging (Blache et al. 1999).  An imbalance 

between nutrients, in particular those involved in antioxidant status, could explain the onset of an 

enhanced production of free radicals (Blache et al. 1999).   By definition, a free radical is a 

molecule containing an odd number of electrons.   If two radicals react, both are eliminated; if a 

radical reacts with a nonradical, another larger, but different, free radical is produced.  The latter 

event may become a chain reaction, playing a role in tissue injury.  Once free radicals are formed 

they attack molecules in the immediate vicinity.  In living cells this means taking electrons from 

cell constituents.  Radicals may give rise to more radicals, therefore; causing progressively more 

damage.  Radical-induced changes may result in cancer. 
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The body has developed methods of defending itself against the harmful effects of free 

radicals.  Superoxide dismutases, enzymes in mitochondria, and antioxidants are effective in 

counteracting the harmful effects of free radicals (Davis 1997).  The primary mechanism by 

which the body gets rid of radicals is through donation of electrons between oxygen species and 

antioxidants.  Coenzyme Q (CoQ) is a nutrient that acts as an antioxidant with reduction 

potential to eliminate a free radical (Groff and Gropper 2000).  

 

CoQ is a fat-soluble compound that serves as an antioxidant.  It provides hydrogens to 

terminate lipid peroxyl radicals and complements the antioxidant activity of Vitamin E in low-

density lipoprotein (LDL) radical oxidation (Groff and Gropper 2000; Thomas, Neuzil and 

Stocker 1997).  CoQ is efficient against lipid peroxidation in solution and in liposomal 

membranes, therefore; CoQ plays an important protective role against oxidative stress (Niki 

1997).     

 

The protective role of CoQ against oxidative stress prevents this type of cellular injury in 

tissues.  With this knowledge it is critically important to study whether or not CoQ’s antioxidant 

properties can prevent cellular injury in colon tissue.  Colon cancer was responsible for 47,700 

deaths in the United States in 2000 and there will be an estimated 148,300 new cases of cancers 

of the colon and rectum this year and an estimated 56,600 deaths (American Cancer Society 

2000 and 2002).  Therefore, it is imperative to determine whether or not CoQ can play a 

protective role against colon cancer in humans.     
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Statement of the Problem 

 We know that high iron consumption is linked to an increased risk of colon cancer.  One 

mechanism by which this occurs is through the process of lipid peroxidation or oxidative stress 

on the tissue.  This process creates free radicals that attack and cause damage to colon cell 

membranes.  This damage can ultimately contribute to the onset of colon cancer.  CoQ is an 

antioxidant that can act to sequester the free radicals rendering them harmless to the colon cell 

membrane.        

 

An imbalance between nutrients, in particular those involved in antioxidant status, could 

explain the onset of an enhanced production of free radicals (Blache et al. 1999).   A decrease in 

the cellular levels of the antioxidant CoQ has been shown to be associated with breast and liver 

cancer (Lockwood et al. 1995; Portakal et al. 2000; Yamamoto et al. 1998).  However, it is not 

known whether CoQ is similarly associated with colon cancer.  Therefore, this research study 

seeks to demonstrate whether or not CoQ protects colon cells from iron-induced lipid 

peroxidation.  This research complements what is currently known about colon cancer and 

enhances our understanding of the disease. 

 

Research Objectives 

 One objective of this cell culture study is to determine whether or not CoQ, acting as an 

antioxidant, will protect colon cell membranes from iron-induced lipid peroxidation.  If so, this 

would suggest that CoQ can protect against free radical damage to the cell membranes of the 

colon that is associated with the development of cancer.  A second objective is to incorporate 

results from this research into what is known about preventing colon cancer by promoting the 
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ingestion of proper amounts and types of nutrients and incorporation of healthy lifestyle habits.  

Many new cases and deaths from colorectal cancer are preventable by improvements in nutrition 

and physical activity (Frazier et al. 2000).    

 

 Significance of the Study 

 The significance of this study is that the research results may contribute to the discipline 

of human nutrition.  Prior to this study, iron-induced lipid peroxidation in colon cells (Caco-2 

cells) has been researched, but the effects of CoQ on colon cells have not been studied.  The 

results of this study will provide information to further understand the relationship between lipid 

peroxidation and colon cancer.  It will also provide information on whether or not CoQ is 

protective for colon cells.  The results of this study may contribute information for further 

research to be conducted on the relationship between CoQ and colon cancer.   

 

Limitations of the Study 

 This research is on selected chemical changes of lipids from human colon cancer cells 

(Caco-2) grown in cell culture.  The research was conducted with a very small budget for 

supplies and equipment in a cell culture laboratory started from scratch just prior to the initiation 

of this investigation.  With the stringent budgetary constraints minimal replications of data were 

obtained.  In fact, I was actively involved in the grant writing to obtain adequate funding to 

purchase proper equipment and supplies before beginning the research.  The study was limited 

by the facilities and equipment available at the University of Wisconsin-Stout Biology and 

Chemistry Department Laboratories.  Another limitation is the applicability of information 

obtained from the use of colon cancer cells grown under culture conditions as a model of the 

 6



behavior of human colon tissue in vivo.  Although the cell culture conditions made it possible to 

control many variables and focus on the effects of CoQ on iron-induced lipid peroxidation, 

caution must be exercised when extrapolating the data to human colon tissue.  

    

Assumptions 

 The assumptions made during the research process include the ability to replicate iron-

induced lipid peroxidation accomplished in numerous studies using cell cultures.  Therefore, this 

research study was conducted on the basis of being able to replicate what other laboratories have 

shown, the ability of iron to initiate lipid peroxidation (Bachowski et al. 1988; Brasitus et al. 

1985; Jourd’heuil et al. 1993; Courtois et al. 2000).  A second assumption made was that Caco-2 

cell culture would be an acceptable model for the study of iron-induced lipid peroxidation in 

human colon tissue in vivo.   

 

Methodology 

 The methodology of this research includes the maintenance of the Caco-2 cells, 

subculturing the Caco-2 cells, the experimental design, the cell lysis and freeze thaw cycles, the 

lipid peroxidation colorimetric assay, the Lowry protein assay, and the statistical analysis of the 

data using the Statistical Package for the Social Sciences (SPSS) software version 9.0.   
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 CHAPTER TWO 

Literature Review 

 

  This chapter reviews the literature on the proliferation and prevention of colon cancer 

both in vitro and in vivo.  The ability of iron to induce lipid peroxidation and the attendant 

damage to colon cells precedes the initiation and propagation of colon cancer (Younes et al. 

1990).  Such damage can occur when iron is present at increased levels in the body (Younes et 

al. 1990).  As a result of lipid peroxidation in cells, two products of that process are formed in 

measurable amounts in cells, malondialdehyde (MDA) and 4-hydroxynonenals (4-HNE or HNE) 

(Moore and Roberts 1998).  Coenzyme Q (CoQ) is an antioxidant that has increasing support for 

having protective affects against cancer.  Studying ways to prevent colon cancer is important to 

human life since cancers as a whole are one of the leading causes of death in the United States. 

 

 Rapid advances in cancer prevention challenge health care workers to look not only at the 

treatment of the disease but also at its prevention.  Understanding cancer and what causes cancer 

to develop is important in order to determine strategies to prevent the occurrence of cancer.     

Cancer is a group of diseases characterized by uncontrolled growth and spread of abnormal cells.  

If the spread is not controlled, it can result in death.  All cancers involve the malfunction of 

genes that control cell growth and division.  Only about 5% to 10% of cancers are clearly 

hereditary, in that an inherited faulty gene predisposes the person to a very high risk of particular 

cancers (American Cancer Society 2002).  The remainder of cancers lacks a clear hereditary 

connection, but result from damage to genes (mutations) that occurs throughout a person’s 

lifetime, either due to external or internal factors (American Cancer Society 2002).  External 
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factors include tobacco, chemicals, radiation, nutrients and infectious organisms, while internal 

factors include inherited mutations, hormones, immune conditions and mutations that occur from 

metabolism (American Cancer Society 2002).  The individual can control many of the external 

factors.    

  

 Scientific evidence suggests that about one-third of the cancer deaths that occur in the US 

each year are due to the adult diet, including its effect on obesity.  Another third is due to 

cigarette smoking.  Therefore, for the majority of Americans who do not use tobacco, dietary 

choices and physical activity become the most important modifiable determinants of cancer risk 

(American Cancer Society 2000).  The evidence also indicates that although inherited genes do 

influence cancer risk, heredity alone explains only a fraction of all cancer.  Behavioral factors 

such as tobacco use, dietary choices, and physical activity modify the risk of cancer at all stages 

of its development (American Cancer Society 2000).      

 

 Cancer is a burden on U.S. health care costs.  The National Institute of Health estimate 

overall costs for cancer in 2001 at $156.7 billion: $56.4 billion for direct medical costs (total of 

all health expenditures): $15.6 billion for indirect morbidity costs (cost of lost productivity due 

to illness): and $84.7 billion for indirect mortality costs (cost of lost productivity due to 

premature death) (American Cancer Society 2002).  Colon cancer has a significant impact on the 

overall costs for cancer treatment since the colon and rectum (colorectal) comprise the third most 

common site of new cases and deaths in both men and women (American Cancer Society 2002). 
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  In the United States, colon cancer is the second most common cancer in adults (after 

lung cancer) and is also the second most common cause of death due to cancer.  Worldwide, it is 

the third most common malignant neoplasm and the second leading cause of cancer deaths 

(Mahan and Escott-Stump 2000).  Since colon cancer is responsible for such a high number of 

cancer deaths, finding preventive mechanisms for colon cancer is vital to the health of humans.   

  

 Factors that increase the risk of colon cancer include family history, occurrence of 

inflammatory bowel disease (both Crohn’s disease and ulcerative colitis), familial polyposis 

polyps, adenomatous polyps, and several dietary components (Steele 1995; Eastwood 1995; 

Potter et al. 1993).  Understanding how dietary choices modify the risk of cancer at various 

stages of its development is the backbone for the prevention of cancers.  Dietary factors that may 

impact the incidence of colon cancer include high meat or fat intake, high intake of fat and iron, 

and low intakes of vegetables, high-fiber grains, carotenoids, vitamins D, E, and folate, and the 

minerals calcium, zinc, and selenium (van Poppel and van-den Bergh 1997; Singh et al. 1997; 

Sawa et al. 1998).  Iron in excess can be toxic because it can promote the formation of harmful 

oxygen radicals, which ultimately cause peroxidative changes to vital cell structures (Britton et 

al. 1994; Bird et al. 1996; Younes et al. 1990; Nelson 1992; Sobotka et al. 1996).    

 

Iron-Induced Lipid Peroxidation 

 Iron is necessary for all cells since it is a component of heme-containing proteins 

(hemoglobin, myoglobin, cytochromes) and numerous nonheme iron-containing proteins 

(Richardson and Ponka 1997; Cullen et al. 1999).  Iron exists in several oxidation states varying 

from Fe6+ to Fe2+, depending on its chemical environment.  The only states that are stable in the 
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aqueous environment of the human body and in food are the ferric (Fe3+) and the ferrous (Fe2+) 

forms.  Dietary iron is found in one of two forms in foods, heme and nonheme.  Heme iron is 

found in meat, fish, and poultry.  Nonheme iron is found primarily in plant foods such as nuts, 

fruits, vegetables, grains, and tofu, and in dairy products such as, milk, cheese, and eggs (Groff 

and Gropper 2000).  Iron can also be found in supplements in the form of ferrous iron, which is 

provided as nonheme iron (Groff and Gropper 2000).   

 

Iron is absorbed into the body through the intestinal cells (enterocyte) in the jejunum, the 

second portion of the small intestine extending from the duodenum to the ileum.  The 

mechanisms of heme iron and nonheme iron absorption differ.  Heme iron is absorbed intact into 

the enterocyte and then is hydrolyzed within the intestinal cell to yield ferrous iron.    Nonheme 

iron is typically present in the stomach in the ferric state.  Absorption of iron is improved if the 

iron is present as ferrous iron (Groff and Gropper 2000).  Therefore, heme iron found in meat, 

fish, and poultry is absorbed more readily into the enterocyte than iron found in plant foods.  

Ascorbate (vitamin C) increases the intestinal absorption of nonheme iron (Groff and Gropper 

2000).  Once iron is absorbed into the enterocyte, it must either be transported through the 

enterocyte into the blood for use by the body tissues, be stored in the intestinal cell for future use 

or be eliminated via the kidneys (Groff and Gropper 2000).  Because the absorption of iron in the 

small intestine is regulated, not all ingested iron is absorbed.  Consequently, a high intake of iron 

may cause higher concentrations of iron to reach the colon.  If a high fiber diet is not present to 

move the iron quickly through the colon, then higher amounts of iron are available for extended 

periods to initiate cell damage in the colon. 
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Storage of iron occurs in the body when iron is absorbed in excess of the body’s need.  

Iron stored in cells in the form of ferritin can increase the amount of iron available to the body 

since ferritin is not a stable compound; it is constantly being degraded and resynthesized to 

maintain an available intracellular iron pool (Groff and Gropper 2000).  Ferritin is synthesized in 

a variety of tissues, including the liver, spleen, bone marrow, and intestine (Groff and Gropper 

2000).  The superoxide radical (O2-) can initiate iron release from ferritin in vitro (Groff and 

Gropper 2000).         

 

 Iron is an essential mineral in the health and maintenance of the human body.  The 

ferrous iron in the center of the heme molecule allows the transport of oxygen to tissues 

(hemoglobin); the transitional storage of oxygen in tissues, particularly muscle tissues 

(myoglobin); and the transport of electrons through the respiratory chain (cytochromes) (Groff 

and Gropper 2000).   

 

 Oxygen (O2) plays a double role in the cell: it is essential for aerobic respiration, but it 

can also act as a free radical since it contains two unpaired electrons.  When an oxygen molecule 

captures one electron, it becomes a superoxide radical (O2-).  This highly reactive radical is 

normally produced by macrophages in order to destroy bacteria after phagocytosis.  However, 

this species can also be generated during oxidative phosphorylation by the respiratory chain in 

mitochondria.  It can also be generated in a dismutase reaction by the action of superoxide 

dismutase (SOD) to form hydrogen peroxide (H2O2) (Gate et al. 1999).  (Figure 1).   
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Iron acts as a proxidant when free ferrous iron (Fe2+) catalyzes the nonenzymatic Fenton 

reaction (Figure 1) in which ferrous iron (Fe2+) reacts with hydrogen peroxide (H2O2) to 

generate ferric iron (Fe3+) and hydroxyl radicals (OH·).  The hydroxyl radical, OH·, is an 

oxygen-centered radical that is a very highly reactive oxidant that can oxidize DNA, lipids, and 

proteins (Kehler 1989; Groff and Gropper 2000).  In a reaction known as the Haber-Weiss 

reaction (Figure 1), the superoxide radical O2- may react with another hydrogen peroxide 

molecule to generate molecular oxygen (O2) and free hydroxyl radicals (OH·).   

 

Figure 1: Chemical reactions which lead to the generation of reactive oxygen species (Gate et     
al. 1999). 

 

                                            SOD 
                    2 O2·  +  2 H-           H2O2  +  O2- 
 
 
 
                                            
                    Fe2+ + H2O2             Fe3+ + OH· + OH- Fenton reaction 
 
 
                                        (Fe²+/Fe³+) 
                    H2O2  +  O2-              OH·  +  OH- + O2 Haber-Weiss reaction 
 

 
 

 

 

The hydroxyl radical OH· is a severe threat to living systems (Diplock 1991).  It is 

thought to be one of the most potent reactive radicals and to attack all types of molecules in the 

body (Buettner 1993; Groff and Gropper 2000).  Free hydroxyl radicals rapidly take electrons 

from the surroundings.  The hydroxyl radical is thought to be a major initiator of lipid peroxide 
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(LOOH) reactions.  Thus, removal of free hydroxyl radicals is important to prevent destruction to 

cell components.   

 

Lipid peroxidation occurs in polyunsaturated fatty acids (Gate et al. 1999).  As shown in 

Figure 2, the process is initiated by a hydroxyl radical (OH·) that captures a hydrogen atom from 

a polyunsaturated fatty acid (LH) in the phospholipids of membranes and produces lipid carbon-

centered radical (L·).  Lipid carbon-centered radicals (L·) rapidly react with molecular oxygen 

(O2) to generate a lipid peroxyl radical (LOO·) (Figure 2).  The peroxyl radical product is 

similarly highly reactive and can combine with other peroxyl radicals to alter membrane 

proteins.  The lipid peroxyl radicals (LOO·) can also capture a hydrogen atom from the adjacent 

fatty acids (LH) to generate a chain reaction that propagates additional lipid carbon-centered 

radicals (L·) as well as generating lipid peroxides (LOOH) (Gate et al. 1999; Groff and Gropper 

2000).    If lipid peroxides (LOOH) come in contact with free iron, lipid alkoxyl (LO·) and 

peroxyl (LOO·) radicals can also be generated.  During lipid peroxidation, malondialdehyde 

(MDA), a highly reactive dialdehyde, can also be generated (Gate et al. 1999).   
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Figure 2: Mechanism of lipid peroxidation (Gate et al. 1999; Groff and Gropper 2000). 

  Initiation: 

   LH  +  OH·     L·  +  H2O    

  Propagation: 

   L·  +  O2           LOO· 

   LOO·  +  LH    LOOH 

  In contact with iron: 

   LOOH  +  Fe2+   LO·  +  OH-  +  Fe3+ 

   LOOH  +  Fe3+  LOO·  +  H+   +  Fe2+ 

  MDA formation: 

   LOOH    LO·    MDA 

 

 

Lipid peroxide radicals can be generated in the colon.  Sawa et al. (1998) found that lipid 

peroxides and heme components generate peroxyl radical species that damaged DNA.  They 

suggested that the lipid peroxyl radicals generated had originated from common dietary 

components such as fat and red meat, which usually contains a large amount of heme-iron.  The 

large amounts of heme-iron in red meats may contribute to the high incidence of colon cancer.  

There is increasing evidence from other research studies that excess quantities of dietary iron 

have serious consequences in living cells and organisms including lipid peroxidation, cellular 

damage, and carcinogenesis in response to hydroxyl radical production (Younes et al. 1990; 

Nelson 1992; Sobotka et al. 1996).  Very high dietary iron levels, 2000 mg iron/kg body weight 

in rats, resulted in a 1.7-fold increase in lipid peroxidation within the colon mucosa compared to 
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controls (Rimbach et al. 1997).  This oxidative stress in the colon was attributed to the formation 

of hydroxyl radicals.  Rats fed either 500 or 2000 mg iron/kg body weight produced 68% and 

88% more OH · than controls, respectively.  The presence of elevated concentrations of iron in 

the colon may have catalyzed the formation of hydroxyl radicals via the Fenton reaction 

(Rimbach et al. 1997).  Lund et al. (2001) argue that past animal studies used unrealistically high 

concentrations of iron.  Results of their experiments with rats fed a lower dosage of iron for a 

longer time indicated that dietary iron intake of 29 and 102 mg/kg for 6 months was associated 

with an increased free radical generating capacity and increased lipid peroxidation in the colon of 

the experimental animals (Lund et al. 2001).  Thus, moderately high dietary iron for a prolonged 

period may be a risk factor for colon cancer.  In cell culture studies, Courtois et al. (2000) 

showed that Fe2+-ascorbate mediates lipid peroxidation in Caco-2 cells as indicated by the 

increased formation of MDA with increased Fe2+-ascorbate in a dose-dependent manner. 

 

 

MDA and 4-HNE as Indicators of Lipid Peroxidation 

   Lipid peroxidation is a form of oxidative tissue damage that occurs in polyunsaturated 

fatty acids.  The process is initiated when a hydroxyl radical captures a hydrogen atom from a 

methylene carbon of the fatty acid (Figure 2).  The process of lipid peroxidation can also occur 

upon exposure to hydrogen peroxide and superoxide radicals.  Resulting structural alterations the 

cellular membranes bring about the release of cell and organelle contents, the loss of essential 

fatty acids, and the formation of cytosolic aldehyde and peroxide products (Comporti 1985; 

Burton et al. 1990).   
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 Malonaldehyde (MDA) and 4-hydroxynonenals (4-HNE) are good indicators of lipid 

peroxidation since they are generated in the process of oxidation of polyunsaturated fatty acids 

(Yoshida et al. 2000).  MDA, a highly reactive dialdehyde, is a major end product of free radical 

reactions with membrane fatty acids (Thamilselvan et al. 2000).  Schauenstein and Esterbauer 

(1977) were among the first to recognize the importance of reactive aldehydes, such as MDA and 

4-HNE.  These compounds have been used in many studies to indicate the extent of lipid 

peroxidation in cells and tissues (Thamilselvan et al. 2000; Moore and Roberts 1998; Courtois et 

al. 2000; Yoshida et al. 2000).   

 

Antioxidants and Their Role in Cancer 

   Antioxidants act to sequester free radicals and render them harmless.  An antioxidant is 

an agent that prevents or inhibits oxidation.  They are naturally occurring or synthetic substances 

that help protect cells from the damaging effects of oxygen free radicals (Davis 1997).  

Antioxidants donate electrons to free radicals to convert them into harmless atoms and 

molecules.  Several nutrients have antioxidant properties.  These include vitamin E, manganese, 

glutathione, CoQ and vitamin C (Groff and Gropper 2000).  These antioxidants all appear to be 

involved in the elimination of carbon-centered radicals and peroxyl radicals (Groff and Gropper 

2000).   

 

CoQ as an Antioxidant Involved in Cancer  

 CoQ has been acclaimed as one of the most exciting nutrient discoveries of our time 

(Nutrition News 1994).  It was originally isolated in 1957 by Dr. Fred Crane of the University of 

Wisconsin (Crane et al. 1957).  CoQ, a ubiquinone, is actually a group of substituted 1,4-
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benzoquinone derivatives with an isopentyl side chain of variable length (Figure 3) (Mahan and 

Escott-Stump 2000).  CoQ10 is that form of ubiquinone with 10 isopentyl groups in its side chain.   

CoQ10 is a naturally occurring compound that our cells use in the electron transfer process in 

mitochondria during ATP synthesis (Webb 1997; Groff and Gropper 2000).  CoQ is essential for 

normal cell respiration and function; any deficiency in its availability or biosynthesis could 

disrupt normal cellular function that could lead to abnormal patterns of cell division that might 

induce cancer (Folkers 1974).  It is present in a wide variety of foods including nuts, fish, meat, 

egg yolks and whole grains (Scheer 1999).  Certain factors decrease CoQ10 in the body, 

including illness, physical, mental, and emotional activity, stress, and aging (Scheer 1999). 

 

   Figure 3: The structure of CoQ  

 

 
        

 

    

    

 

 The antioxidant action of CoQ in the body is similar to that of alpha-tocopherol (vitamin 

E) where it aids in circulation, stimulates the immune system, increases tissue oxygenation, and 

counteracts the aging process (Scheer 1999).  CoQ provides hydrogens to terminate lipid peroxyl 

radicals (Thomas et al. 1995; Mohr et al. 1992).  The mechanism by which this occurs is 

described in Figure 4.  The CoQH· formed may be regenerated into CoQH2 through the action of 

the electron transport chain in the mitochondria (Groff and Gropper 2000).  CoQ also functions 
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as a supportive antioxidant that restores and regenerates other antioxidants (Scheer 1999), 

including Vitamin E (Thomas, Neuzil and Stocker 1997).  The mechanism by which this occurs 

is demonstrated in Figure 5.    

 

Figure 4: The mechanism by which CoQ provides hydrogens to terminate lipid peroxyl radicals.   

 

CoQH2   +   LOO·        CoQH·   +   LOOH 

 

CoQH2 is the reduced form of CoQ, LOO· is the lipid peroxyl radical, and LOOH is lipid 
hydroperoxides (Groff and Gropper 2000).  
 
   

 

Figure 5: The mechanism by which CoQ helps regenerate Vitamin E.  

 

CoQH2   +   E·        CoQH·   +   EH 

E· is the radical form of Vitamin E, CoQH2 is the reduced form of CoQ (Groff and Gropper 
2000).    
 
  

 

 Diseases that are associated with decreased amounts of CoQ in tissues of the body 

include heart disease and cancer (Webb 1997).  Portakal et al. (2000) and Jolliet et al. (1999) 

found that the CoQ concentration in tumor breast tissue was significantly decreased as compared 

to surrounding normal breast tissue.  The results of this study imply that administration of CoQ 

may induce the protective effect against cancer development in breast tissue.  The investigators 
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concluded that since free radicals may promote tumor development, CoQ supplementation for 

breast cancer patients could be clinically helpful (Jolliet et al 1998).  The findings from the 

previous two studies involving CoQ and breast cancer coordinate with the findings of another 

study involving patients with breast, lung and pancreas cancer.   Folkers et al. (1997) found that 

the CoQ levels in patients with cancer of the breast, lung and pancreas were lower than normal 

(Folkers et al. 1997).   

  

 CoQ is beneficial to functions of the human body (Scheer 1999; Webb 1997; Portakal et 

al. 2000).  Supplementation with CoQ may have many health benefits including protection 

against cancers and heart disease (Webb 1997; Folkers et al. 1997; Jolliet et al. 1998).  

Deficiencies in CoQ require supplementation with higher amounts of CoQ than are available in 

the diet (Crane 2001).  Webb (1997) reported that Peter Langsjoen, M. D., a cardiologist in 

Tyler, Texas is so convinced of CoQ’s effectiveness, that he recommends 120 mg twice daily for 

his patients diagnosed with cardiomyopathy.   

 

 Based on significant clinical benefits of CoQ supplementation for prevention of breast, 

lung and pancreas cancers (Folkers et al. 1997), and heart disease (Webb 1997), it is important to 

search for similar benefits of CoQ supplementation for the treatment of colon cancer.  Currently, 

there is no published research concerning the effects of CoQ on colon cancer.  Since iron-

induced lipid peroxidation is a factor in the development of colon cancer (Courtois et al. 2000) 

and since CoQ is a significant contributor to the repair of free radical damage caused by iron-

induced lipid peroxidation, it is vital to determine whether or not CoQ can help protect against 

iron-induced lipid peroxidation in human colon cancer cells (Caco-2 cells).   

 20



CHAPTER THREE 

Materials and Methods 

Materials 

 Dulbecco’s Modified Eagle Medium (DMEM) (Cat. # 12100-038) prepared with 

NaHCO3 (Cat. # 11810-025), penicillin-streptomycin-glutamine (Cat. # 10378-016), Fetal 

Bovine Serum certified origin: United States (Cat. # 16000-036), and DMEM non-essential 

amino acids solution (Cat. #11140-050) were all purchased from Gibco (Grand Island, NY).  

Coenzyme Q10 (Cat. # 195108) purchased from ICN Biomedicals, Inc. (Auraro, OH), was made 

soluble with mineral oil.  Ascorbic Acid-Fe (Cat. # A-0207) was purchased from Sigma (St. 

Louis, MO).  PBS-EDTA-Trypsin was prepared with 0.1 M NaCl, 0.01 M NaH2PO4-H2O, 0.02% 

EDTA (Cat. # E-675), and 0.05% Trypsin (Cat. # T-0303) was purchased from Sigma (St. Louis, 

MO).  Lipid Peroxidation Colorimetric Assay Kits (product # FR 12) purchased from Oxford 

Biomedical Research (Oxford, MI).  Butylated hydroxytoluene (BHT) (Cat. # 101162) purchased 

from ICN Biomedicals, Inc. (Auraro, OH) was used in the Colorimetric Assay.  Caco-2 cells 

were provided by Dr. Richard Wood (Tufts University, Boston, MA).  Other materials included: 

T-75 cell culture flasks (Nunclon, ™ by Nuno), 6-well cell culture plates (Product # 3516, 

Corning Inc., Corning, NY), CO2, water-jacketed cell culture incubator (Model # 2310 

manufactured by Sheldon Manufacturing Inc. Cornelius, OR and purchased through VWR 

Scientific Products), laminar flow hood, and -80º Celsius freezer.  Cell count was conducted 

using a hemacytometer under a brightfield microscope.  Colorimetric assay of MDA and 4-HNE 

was performed using a UV-Visible Spectrophotometer (Varian, Walnut Creek, CA).  The 

following chemicals were used to prepare Lowry A and Lowry B solutions: Na2CO3, NaOH, Na-
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K-tartrate, CuSO4· 5H2O and Folin & Ciocalteu’s Reagent (Cat. # F-9252) are all chemical grade 

purchased from Sigma (St. Louis, MO). 

 

 

Methodology 

Maintenance of Caco-2 Cells 

 Caco-2 (human colon cancer cells) cells were grown at 37ºC with 5% CO2 with 100% 

humidity in DMEM containing 1% penicillin-streptomycin-glutamine and 1% DMEM 

nonessential amino acids (this mixture is referred to as DMEM) and supplemented with 20% 

Fetal Bovine Serum (20% FBS DMEM) for two days then supplemented with 10% Fetal Bovine 

Serum (10% FBS DMEM).  Caco-2 cells were maintained in T-75 cell culture flasks (75 cm2 

growing surface).  Cultures were split when they reached 75-90% confluence, using PBS-EDTA-

Trypsin.  The medium was refreshed every two days with 10% FBS DMEM.  Cells were 

cultured for 4 to 6 days prior to using or subculturing.     

 

Subculturing Caco-2 Cells 

 After old medium was discarded, 5 ml of PBS-EDTA-Trypsin was added to the cell 

culture flask to detach the cells.  The cell culture flask was placed in the incubator for 

approximately 10 minutes.  The flask was then checked under a microscope to see if the cells had 

detached from the surface of the flask.  The cells were transferred into a 15 ml centrifuge tube 

containing 5 ml of DMEM with 10% FBS, and centrifuged for 2 minutes at 1700 rpm in a fixed 

angle rotor with a radius of 12 cm.  The supernatant was removed by aspiration.  Cells were 

resuspended into 5 ml of 10% FBS DMEM.  A cell count was taken using a hemacytometer.  
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The suspension of cells was split into T-75 cell culture flasks at a cell density of 2 x 106 

cells/well and the volume increased to 10 ml using 20% FBS DMEM.  For experiments, cells 

were seeded into 6-well plates at 2 x 106 cells/well in a volume of 1.5 ml of 20% FBS DMEM. 

 

Experimental Design 

 The treatment of the Caco-2 cells in the 6-well plates included the control (nothing added 

to the cells), Fe2+-ascorbate and the vehicle (mineral oil), and iron plus CoQ10 (400 uM) in 

mineral oil.  Mineral oil and CoQ10 alone were added to DMEM to control for any interactions 

with the DMEM.  Iron was used at concentrations of 200, 400 and 800 uM.  The old media was 

removed by aspiration from each well.  The treatment was added to each well followed by 20% 

FBS DMEM which brought the final volume to 1.5 ml per well.  The cells were then incubated 

for 24 hours before harvesting the cells and media to be assayed with the lipid peroxidation 

colorimetric assay. 

 

Cell Lysis and Freeze Thaw 

 Cells were denatured (lysed) via a freeze/thaw method prior to running the lipid 

peroxidation colorimetric assay and protein assay.  DMEM was removed by aspiration from each 

well.  500 ul distilled water was added to each well.  The 6-well plates were then placed into the 

-80º Celsius freezer for 5 minutes and then placed into an incubator for 5 minutes to thaw.  This 

freeze/thaw cycle was repeated 4-5 times.  Samples were placed on ice and immediately assayed 

for MDA and 4-HNE or alternatively samples were stored at -80ºC for no more than 2 weeks.  

Stored samples were thawed in the refrigerator prior to assaying.    
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Lipid Peroxidation Colorimetric Assay 

 The lipid peroxidation colorimetric assay was conducted according to the directions 

provided with the MDA/4-HNE assay kit by the supplier.  Standard curve and sample tubes were 

prepared with  650 ul diluted N-methyl-2-phenylindole, 150 ul methanesulfonic acid, 0-200 ul 

1,1,3,3-tetramethoxypropane in 20 mM Tris-HCL buffer for the MDA assay or 0-200 ul 4-

hydroxynonenal in 0.5 M BHT for the 4-HNE assay for a final volume of 0-20 uM.  Sample 

tubes were vortexed, incubated at 45ºC for 40 minutes, cooled on ice and then the absorbance 

measured in a spectrophotometer set at a wavelength of 586 nm.   

 

Protein Assay 

 The protein content in a sample from each well of the 6-well plate was determined 

according to the method described by Lowry et al. (1951).  Lowry solutions A, B, and C were 

prepared as needed in the laboratory.  Lowry A solution contained: 0.19 M Na2CO3, 0.1 M 

NaOH and 0.7 M Na-K-tartrate.  Lowry B solution contained: 20 mM CuSO4· 5H2O.  Lowry C 

solution contained a mixture of 50 parts Lowry A and 1 part Lowry B.  Commercially prepared 

Folin reagent was diluted with distilled water to 1 M.  Bovine serum albumin (BSA) was diluted 

with distilled water to make a stock solution (1mg/ml) that was stored at -80ºC until used.  The 

BSA stock solution was further diluted with distilled water to prepare working protein standards 

containing 0, 5, 10, 15, and 25 ug protein/ul.  The samples were diluted 1:10.  One ml of Lowry 

C was added to each tube and vortexed for 2-3 seconds.  After 10 minutes, 100 microliters of 1M 

Folins was added to each tube and the tube vortexed for 2-3 seconds.  After 30 minutes, the 

absorbance was measured in a spectrophotometer set at a wavelength of 750 nm.    
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Statistical Analysis 

 Data were analyzed with SPSS version 9.0 using one-way analysis and two-way analysis 

of variance (ANOVA) with appropriate post-hoc tests.  P-values less than 0.05 were considered 

significant.  Each n represents an average of 2 or more wells from the same experiment.   
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CHAPTER FOUR 

Results and Discussion 
 
Results 

 MDA and HNE generation after Fe 2+ -ascorbate exposure.  The effectiveness of Fe 2+ -

ascorbate as an initiator of lipid peroxidation was tested after incubation with Caco-2 cells.  

Following a 24-hour exposure to Fe2+ -ascorbate, the degree of lipid peroxidation was 

determined by measuring MDA and HNE in the cellular fraction.  Figures 6 and 7 depict the 

amounts of MDA and HNE formed in the cellular component at iron concentrations of 200 uM, 

400 uM, and 800 uM compared to controls.   

 

 

Figure 6: MDA formation in the
cellular component

Control 200 uM 400 uM 800 uM
0.0

2.5

5.0

7.5

Iron Treatment

 

 

 

 

 

 

 

 

 

 

 

 

 26



Figure 7: HNE formation in the
cellular component
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 The total MDA (Figure 6) or HNE (Figure 7) formation is depicted in the cellular 

fraction of cultured Caco-2 cells grown with 200, 400 or 800 uM Fe2+-ascorbate.  Values are 

mean +/- standard error from 26 experiments done in duplicate.  No statistically significant 

(p>0.05) difference in the total amount of MDA or HNE formed during a 24-hour exposure of 

Caco-2 cells to iron concentrations of 200, 400 and 800 uM for 24 hours was observed using a 

one-way ANOVA test at each Fe concentration.  The levels of MDA and HNE in the cellular 

component were not consistent with what Courtois et al. (2000) found in their study using Caco-

2 cells.  Courtois et al. (2000) observed a significant concentration-dependent increase in MDA 

formation between 50 and 400 uM of Fe2+-ascorbate in cells and in medium, with MDA 

formation peaking at 400 uM.   

 

 Since we were not able to duplicate the results of Courtois et al. (2000), we expressed the 

data per ng protein in each corresponding well.  Figure 8 illustrates the amount of MDA and 

HNE in the cells based on the amount of protein in the well, where n=26.   

 27



 Figure 8: The amount of MDA and
HNE in the cellular component

corrected for protein
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 The amount of MDA or HNE (ng protein per well) following treatment with 200, 400 or 

800 uM Fe2+-ascorbate for 24 hours is presented in Figure 8.  Values represent the mean +/- 

standard error from 26 experiments done in duplicate.  No difference was seen using a one-way 

ANOVA test at each Fe concentration (200, 400 and 800 uM).  The data is consistent between 

MDA and HNE formation.   

 

 A significant increase in MDA or HNE formation was not detected in samples obtained 

from Caco-2 cell cultures exposed to iron concentrations from 200 to 800 uM for 24 hours.  A 

single experiment involving a 48 hour exposure of cultures of Caco-2 cells to 400 and 800 uM 

Fe2+-ascorbate also failed to demonstrate increased formation of MDA and HNE (Table 1).   
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Table 1: The amount of MDA and HNE per well with 24 hours or 48 hours of iron treatment, 
where n=1 or 2. 
 
                    MDA                      HNE  

Iron 
concentration 

48 hour  24 hour  48 hour  24 hour  

Control 2.9 ng, 4.8 ng 0.8 ng, 3.1 ng 3.5 ng, 5.6 ng 1.3 ng, 3.8 ng 

400 uM 3.3 ng 5.2 ng 4.0 ng 6.0 ng 

800 uM 4.2 ng, 8.4 ng 3.0 ng 5.1 ng, 9.5 ng 3.7 ng 

 

 

 Protective effects of CoQ10.  CoQ10 was introduced into the cell culture to determine 

whether or not it affected the formation of MDA and/or HNE.  The amount of MDA and HNE 

was not significantly different in the cellular component by itself but significant differences were 

apparent when the amount of MDA and HNE in the media and cellular components were 

analyzed together (Figures 9 and 10).  The data is standardized to ng protein per well.  

 

Figure 9: The amount of MDA in the
media and cellular component

corrected for protein

No Treatment CoQ10 Vehicle
0

10

20

30
No Fe
200 uM Fe
400 uM Fe

*

Treatment

 

 

 

 

 

 

 

 

 29



 Figure 10: The amount of HNE in the
media and cellular component

corrected for protein
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 The amount of MDA (Figure 9) or HNE (Figure 10) in the sample (sum of values 

obtained from cellular fraction and media fraction) obtained from cultured Caco-2 cells exposed 

to 200 or 400 uM Fe2+-ascorbate for 24 hours are expressed per ng protein per well.  Values are 

mean +/- standard error from 2-7 experiments done in duplicate.  No difference was seen using a 

one-way ANOVA with the Student-Newman-Keuls Multiple Range test between all three 

treatments at each Fe concentration (200 and 400 uM).  When the data were analyzed with a two-

way ANOVA, however, significance was observed.   When comparing data on the effects of 

CoQ10 on cells treated or not treated with iron, a two-way ANOVA indicated that CoQ10 was 

protective against lipid peroxidation at all iron concentrations tested (* indicates p< 0.05, 

p=0.011 for MDA and p=0.011 for HNE).  In the two-way analysis the impact of the vehicle 

carrying CoQ10 was not included because the n for the vehicle was too small for the analysis to 

be conducted.  The data presented in Figures 9 and 10 suggest that the vehicle was having an 
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effect on CoQ10.  Therefore, the combination of CoQ10 in its vehicle was significantly different 

based on the two-way analysis.   

 

 Protein generation after iron treatment.  The amount of protein in the cell cultures after 

iron treatment was quantitatively evaluated as an indicator of cell growth.  This information was 

also used to standardize the amount of MDA and HNE formed per ng protein.  Figure 11 

illustrates the effect of various amounts of iron on cell growth expressed as the amount of protein 

per well.   

 
 
 
 Figure 11: The amount of protein

based on iron concentration
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 The amount of protein obtained from cell cultures grown for 24 hours in media 

supplemented with 200, 400 and 800 uM Fe2+-ascorbate is depicted in Figure 11.  Values are 

mean +/- standard error from 26 experiments done in duplicate.  No statistically significant 

difference was observed by a one-way ANOVA at each Fe concentration (200, 400 and 800 uM).  
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 The effect of iron, CoQ10 and the vehicle on the assay of MDA and HNE.  The possible 

interactions of iron, CoQ10, and the vehicle with the lipid peroxidation assay were examined to 

discover any effects of MDA and HNE.  No significant difference was detected by the 

colorimetric assay between control samples (one-way ANOVA), and test samples containing 

iron, CoQ10 or mineral oil.  Since the media, DMEM, without cells, was not tested, it remains a 

possibility that MDA and HNE may have been forming in the media regardless of the treatment.   

   

Discussion 

 MDA and HNE generation after Fe 2+ -ascorbate exposure.  The Caco-2 cell line has 

been used to examine a variety of intestinal functions, including nutrient absorption (Levy et al. 

1995).  Courtois et al. (2000) showed that Fe 2+-ascorbate promoted the production of peroxides 

as evidenced by MDA formation above baseline values.  A concentration-dependent equivalent 

increase in MDA formation was observed between 50 uM and 400 uM of Fe 2+-ascorbate in cells 

and in the medium (Courtois et al. 2000).  The results of our experiment are not consistent with 

what is reported in the literature (Courtois et al. 2000).  A concentration-dependent increase in 

MDA or HNE formation was not observed between 200 uM and 800 uM of Fe 2+-ascorbate in 

cells and in media in our experiments (Figures 6, 7 and 8).  This data is not consistent with the 

data reported by Courtois et al. (2000).  This may be due to not controlling for substances in the 

media, such as iron.  DMEM has a phenol red color, absorbing visible light maximally at 559 nm 

whereas the wavelength of absorbance used for the MDA and HNE colorimetric assay was 586 

nm.  Therefore, it is possible that components of the DMEM may have interfered with the 

colorimetric assay due to the close proximity of the wavelengths of these absorbance maxima.  A 
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second possibility for the inconsistencies with published data in the literature is the difference 

between facilities and the methods of detecting MDA and HNE formation.  Courtois et al. (2000) 

used High Performance Liquid Chromatography (HPLC) to quantitatively detect MDA 

formation.  According to Liu et al. (1997) assays of aldehydes from lipid peroxidation also 

include gas chromatography- mass spectrometry and a thiobarbituric acid (TBA) assay that 

measures TBA reactive substances (TBARS).  Liu et al. (1997) argued that the TBA test 

overestimates lipid peroxidation due to its nonspecificity and that the bulk of the TBARS 

material is not MDA.     

 

 Protective effects of CoQ10.  Statistical analysis for the experimental data suggests that 

CoQ10 is significantly protective against lipid peroxidation in Caco-2 cells, but the vehicle, 

mineral oil, was not incorporated into the analysis due to a limited n.  Mineral oil, the vehicle for 

carrying CoQ10 in these experiments, may itself have a protective effect against lipid 

peroxidation in Caco-2 cells.  However, the one-way ANOVA analysis of the limited data from 

those experiments that indicated included mineral oil, indicated that no significance was 

observed.  Figures 9 and 10 show that the amount of MDA and HNE formation in Caco-2 cells 

treated with the vehicle is closer to the amount of MDA and HNE formation in wells treated with 

CoQ10.  In order to conclude that the vehicle did not have an effect on MDA and HNE formation 

in Caco-2 cells, the amount of MDA and HNE formation in Caco-2 cells treated with the vehicle 

should be the same as the levels of MDA and HNE formation in the control Caco-2 cells.  

Additional experiments need to be run to increase the n to provide more reliable evidence that 

mineral oil itself has a protective effect against lipid peroxidation in Caco-2 cells.     
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 Additional investigations of the effects of CoQ10 and mineral oil on Caco-2 cells treated 

with iron appear warranted.  Studies have not been done as yet to evaluate the possible protective 

effect of mineral oil against colon cancer.  The results of this study appear to suggest that mineral 

oil may have a protective action in Caco-2 cells and therefore should be studied further.   

   

 In conclusion, we were unable to replicate the reported iron-induced lipid peroxidation in 

Caco-2 cells (Courtois et al. 2000).  However, we did find some interesting preliminary results 

suggesting that CoQ10 and mineral oil inhibit lipid peroxidation in the Caco-2 cells.  Mineral oil 

has the ability to interfere with the absorption of fat-soluble nutrients, and CoQ10 is a lipid-

soluble quinone present in virtually all cells (Davis 1997).  It is possible that mineral oil may 

have interfered with the ability of the Caco-2 lipid membranes to absorb the CoQ10.  If mineral 

oil has acted in this manner, it cannot be concluded that CoQ10  lacks a protective effect against 

lipid peroxidation in Caco-2 cells treated with iron, but rather that CoQ10 may actually have a 

protective effect against lipid peroxidation if the vehicle used to introduce CoQ10 to the cells did 

not interfere with CoQ10’s action or absorption.   

 

 Also, since mineral oil can readily dissolve into lipid membranes, it may dilute the effects 

of lipid peroxidation or interfere with in vivo lipid peroxidation.  Figures 9 and 10 depict mineral 

oil having a protective effect on iron-induced lipid peroxidation in Caco-2 cells.  The action by 

which this occurs is not yet understood, but it may be because of the ability of mineral oil to 

dissolve into lipid membranes in the Caco-2 cells and therefore, inhibiting or interfering with 

iron-induced lipid peroxidation.  Additional investigations on the effect of mineral oil on Caco-2 

cells should be conducted since it appears that mineral may have a protective effect in the colon.      
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