Teske, David L.

The comprehensive level of Kiel Elementary teachers with the philosophy of technology education.
SUBMISSION OF FINAL RESEARCH REPORT

University of Wisconsin-Stout
The Graduate College

The accompanying research report was submitted to the Graduate College, University of Wisconsin-Stout, as partial completion of the requirements for the degree, (E) M.S./Ed.S. (Circle one) in INDUSTRIAL TECHNOLOGY EDUCATION.

I understand that this report must be officially accepted by the Graduate College which will then forward it to the Library Learning Center, where it will be placed on microform or other electronic storage and made available as any other published document. I attest that the research report is my original work, and as such, it is automatically protected by the laws, rules, and regulations of the U.S. Copyright Office.

TITLE OF REPORT THE COMPREHENSION LEVEL OF KIEL ELEMENTARY TEACHERS WITH THE PHILOSOPHY OF TECHNOLOGY EDUCATION

SIGNATURE David L. Zande Date 4-27-99

PERMANENT ADDRESS 910A 7TH ST.

KIEL, WI 53042

TELEPHONE # 920 894-4115

(This section to be completed by the Graduate College)

This final research report was submitted in partial fulfillment of the requirements for the above stated degree on this date, and has been accepted by the Graduate College and is now ready for transmittal to the Library Learning Center for placement on microform or other storage media.

Richard D. Anderson (Associate Dean for Research & Graduate Studies) 7/20/91 (Date)

(This form must accompany the research paper turned into the Graduate College Office.)
THE COMPREHENSION LEVEL OF KIEL ELEMENTARY
TEACHERS WITH THE PHILOSOPHY OF TECHNOLOGY EDUCATION

By

David L. Teske

A Research Paper

Submitted in Partial Fullfillment of the
Requirements for the
Master of Science Degree
With a Major in
Industrial / Technology Education

Approved: 2 Semester Credits

[Signature]

Investigation Advisor

The Graduate College
University of Wisconsin-Stout
May, 1999
Technology Education at one time in history was at the elementary level when it was called, "Handwork". Over time this transformed into what became known as Industrial Arts. Both had a basic concept of "hands-on" work for students with classroom projects. Industrial Arts eventually lost most of its ties with the elementary school and found its home at the secondary and middle school levels.

With Industrial Arts becoming more technology related, a change was again made to Technology Education. Educators also
realized that the elementary level was a perfect place to begin teaching students basic technical concepts.

The Kiel Area School District is unique to other districts when it comes to a Technology Education program. The curriculum is based on a 5-12 grade level program compared to typical 6-12 or 8-12 programs. The purpose of this study was to determine the level at which elementary teachers within the district comprehend the philosophy of Technology Education.

With this information Technology Education teachers will benefit in creating a 5-12 Technology Education curriculum that will benefit all students in the Kiel Area School District. This study will also benefit the elementary level instructors within the district for possible integration of Technology Education with other disciplines.
Table of Contents

Chapter I .. 1
 Introduction .. 1
 Statement of the Problem .. 4
 Purpose of the Study ... 5
 Research Objectives .. 5
 Significance of the Study ... 5 - 6
 Limitations of the Study ... 6
 Definition of Terms .. 6 - 7

Chapter II ... 8
 Introduction .. 8 - 9
 History ... 9 - 10
 Technology Education at the Elementary School ... 10 - 14
 Kiel Area School's Strategic Plan .. 14 - 15
 Summary ... 16

Chapter III .. 17
 Introduction ... 17
 Method of Study .. 17
 Subjects ... 17
Instrumentation... 17 - 18
Procedure... 18
Chapter IV... 19
Results... 19 - 21
Chapter V... 22
Summary... 22 - 23
Recommendations... 23 - 24
Bibliography.. 25 - 27
Appendixes.. 28 - 29
Chapter 1

INTRODUCTION

Today’s society and school systems are being changed by the rapid pace of existing or new technologies. "The importance of preparing students to be competitive in a technology based society applies to all students" (Thode, 1989, p. 12). Thode, an elementary Technology Education teacher from Hemingway Elementary School in Ketchum, Idaho, believes that all students should have a Technology Education class. Thode (1996, p. 9) states, "Elementary students are curious about how things work and they have no fear of technology". Looking at the big picture, Kieft (1988, p. 27) states, "Unfortunately, opportunities for many children to become involved in Technology Education experiences are limited or nonexistent". In most cases Technology Education is offered at the middle school or secondary level.

States like Wisconsin are creating standardized tests for students to proceed from eighth grade to high school and the 12th grade for graduation. Dugger (1997, p. 99) states, "School systems across the country must establish effective technological literacy efforts, beginning in kindergarten and continuing each year through high school". The State of Wisconsin has developed standards for
school districts around the state to adopt, adapt or develop for their school system. The state standards clarify what must be studied to prepare for the Wisconsin Student Assessment System Test. (Wisconsin Model of Academic Standards for Technology Education, 1998). Technology Education standards for the state of Wisconsin involving the elementary level (fourth grade) are broken into four categories which include; Nature of Technology, Systems, Human Ingenuity, and Impact of Technology. Having Technology Education standards in place at the lower levels requires a philosophy within school districts to be created.

Implementing Technology Education does not have to be a complicated process. It does involve the building of a philosophy or state of mind as to what technology is (more than just computers), what Technology Education is, the relationship of Technology Education to other disciplines, and what learning gains will occur as the result of implementation (Forman & Etchison, 1991, p. 8).

Kiel Area School District, in eastern Wisconsin contains two elementary schools, one middle school, and one high school. The combined student population of the elementary schools is
approximately 525 students. Kiel is a small rural community with a few industrial-based companies. In the district, the first Technology Education class is at the fifth grade level. All fifth through eighth grade students at the middle school are required to enroll in Technology Education classes. The fifth grade course being offered to students is Manufacturing. In this course students learn about the manufacturing process and how it works to produce products used on a daily basis. Students have opportunities to measure, process and combine materials through hands-on activities.

Having a 5-12 Technology Education curriculum promotes technological literacy for students, Kerka (1991. p. 1) states, “Technology Education is envisioned as appropriate for all levels, and as an interdisciplinary program, it can support the academic goals of elementary-secondary curricula”.

Elementary teachers in Michigan have indicated that many teachers believe in the relevance of teaching children about technology and they are interested and willing to implement some form of technology experiences into their classroom. The efforts of the Technology Education teachers assisting in developing units and activities in education for elementary classrooms strengthens the role of Technology Education for
every student in the school system (Kieft, 1988, pp. 27, 29).

Kieft's study conveys a message that elementary staff believes in the relevance of having Technology Education as a part of the elementary curriculum. Ortega and Ortega (1995, p. 12) states, "In order to gain acceptance by classroom teachers, Technology Education must fit in well with what they are already doing in their classroom". It seems reasonable that in order to incorporate Technology Education activities at the elementary level, elementary teachers must have a basic understanding of the philosophy of Technology Education.

To what extent do elementary teachers understand the philosophy of Technology Education? Are Kiel elementary teachers presently teaching integrated technology activities that could be used to teach Technology Education?

Statement of the Problem

There is no measure of the extent to which Technology Education is being taught in the lower-levels of the Kiel Area School's elementary education curriculum. There is no study conducted on the understanding of the philosophy of Technology Education with elementary teachers in the district.
Purpose of the Study

The purpose of this study is to determine if Kiel elementary teachers understand the philosophy of Technology Education as measured by a survey.

Research Objectives

This study will focus on the following objectives.

1. To determine the understanding of the philosophy of Technology Education of elementary teachers in the school district.

2. To describe the demographic portrait (age, sex, etc.) of Kiel elementary teachers presently teaching technology integrated activities.

3. To describe the various perceptions and attitudes toward Technology Education of elementary teachers who attended recent Technology Education or technology related workshops or seminars.

4. To describe the degree to which teachers in the Kiel School District are currently teaching lessons relating to Technology Education.

Significance of the Study

The significance of this study is to determine if integrated technology activities are being taught at the K-4 levels in the Kiel
School District. With this information Technology Education teachers will benefit in creating a state standardized 5-12 Technology Education curriculum and possibly incorporating Technology Education at the elementary level that will benefit all students in the Kiel Area School District.

The study could also be used by the University of Wisconsin-Stout and elementary programs to address needs in the field.

Data could be used in workshops, in services, and seminars in the fields of technology and elementary education.

Limitations of the Study

The limitations of this study include:

1. The nature of the survey presents the possibility of bias of the staff (respondents). Faculty might feel that they should be teaching this curriculum at the elementary level and are not doing it at the present time.

2. Perceptions might vary between staff, administration, school system to school system about what is the philosophy and purpose of technology into the curriculum at the elementary level.

Definition of Terms

1. Integrated Technology Activities- Kirkwood, James J. (1997)
"To enable students to see connections between and among the sciences and mathematics, and learn how technology fits into their daily lives".

2. **Technology Education Philosophy** - International Technology Education Association (1985) "A general education program intended to teach all students about technological concepts, processes, materials, and systems as well as the impact of technology on society".
Chapter II

REVIEW OF LITERATURE

Introduction

This chapter will look at the literature dealing with Technology Education at the elementary level. The review will look specifically at manual arts and industrial arts of the past to the eventual Technology Education programs of today. The review will also cover the ideas from philosophers who started the "hands-on" education movement, to the recent well known educators in the field of Elementary Technology Education.

The review will have four sections. The first section, History, will cover the movement of manual arts. The second section, Technology Education at the Elementary School, contains a perspective from the International Technology Education Association of what Technology Education programs should consist of at the elementary level. Also included in this section will be examples of an elementary programs that are in place with two school districts in the state of Virginia. Section three will include a look at Kiel Area School District's Strategic Plan highlighting the district’s dedication to technology, specifically at the elementary level (K-4). The last section, Summary, will examine the problem that exists at the lower
levels (K-4) of education.

History

Researchers in other studies tend to go back to Dewey for the philosophy or foundation of education. Before Dewey, Jean Jacques Rousseau in the mid 1700's believed that manual arts as a way to learn was integral to child development. Rousseau felt that a child could learn by doing hands-on training not to create a trade for a job, but for mental training. Although Rousseau's ideas were never widely practiced it did create a new era in education (Swierkos & Morse, 1973).

In the mid 1800's to the mid 1900's, John Dewey argued for integration of subject matter based on industrial occupations extending from the home. Dewey used hands-on approaches with students and the use of raw materials. Frederick Gordon Bonser and Lois Coffey Mossman, felt that manual arts was a study of how people make changes in materials and of the problems that result when they do. Bonser, like some elementary technology educators of today, created learning units on shelter, clothing, food and similar items found in the home (Foster & Kirkwood, 1993). Problem solving was involved in these learning units. Bosner tried to establish that manual arts was supposed to deal with material processing, specifically tools and the integration of methods to other subject
areas. One of Bonser’s beliefs was that daily life is not broken up like
subjects in school. There are experiences in daily living where one
needs to apply subjects together (Bonser & Mossman, 1936).
Technology Education was a part of the elementary school, but at
that time it was called, “Handwork”. Handwork was the method of
teaching and learning based on the philosophies of Dewey and
Bonser. Handwork used three-dimensional projects to motivate
classroom learning and to provide experiences. It also promoted the
development through hands-on activities of mental, physical and
social abilities in students. Subject areas were also influenced by
handwork activities which included reading, language arts,
mathematics, and art (Swierkos & Morse, 1973).

Technology Education at the Elementary School (Grades K-6)

Foster (1996, p. 7) states, “The profession of Technology
Education is beginning to realize that elementary school is a
formidable but essential frontier”. Thode (1996, p. 9), a leader in
Elementary Technology Education, states, “Elementary students are
curious about how things work and they have no fear of technology.
Students are also very hands-on orientated and want to try things
themselves”. Again, this tends to go right back to Bonser’s and
Dewey’s basic beliefs. Foster believes in the technologies of the
home, the same as Bonser, for the basis of learning.

The I.T.E.A. states, "Elementary School Technology Education experiences are designed to assist in attainment of educational goals of the total elementary school program. These experiences orient students to technology, develop personal psychomotor skills, and refine attitudes about technology's influence on society. The Technology Education program activities should provide students with experiences that reinforce this curriculum" (I.T.E.A., 1985, p. 26). "The goal of Technology Education at the elementary school is to provide learning reinforcement that contributes to the pupil's personal development and technological awareness" (I.T.E.A., 1985, p. 26).

The International Technology Education Association recommendations for Technology Education at the elementary school (I.T.E.A., 1985):

1. provides opportunities for children to learn fundamental concepts on how people create and control their environment.

2. reinforces and enriches concepts in the sciences, mathematics, language arts, and other subject areas in the elementary school curriculum.

3. allows students to work with tools, materials, and
technological concepts and processes.

4. develops technological awareness.

The Ottobine Elementary School in rural Rockingham County, Virginia, has an enrollment of 300 children for grades pre-k through fifth. Ottobine transformed itself to take the school into the twenty-first century. With help from administrative leadership and guidance of James Madison University, faculty, parents, community, and children the school district set out to have students technologically literate for the twenty-first century (Burchfield, Berry, Cave, Harpine, Monk, Pollard, 1996).

“One goal for kindergarten children is for them to become creative, divergent thinkers who can function independently or as team members” (Burchfield, Berry, Cave, Harpine, Monk, Pollard, 1996, p. 19). Students are involved in real problem solving activities that relate around a theme. The authors (Burchfield, Berry, Cave, Harpine, Monk, Pollard, 1996, p. 19) state, “Technology Education in the first grade continues with a hands-on approach and is a part of a thematic unit of study. Many of the technology projects are basic to the science curriculum as well as the language arts strand, but students make connections to all of the curriculum”.

In the second grade students build on what was learned in
previous classes. Units are directly related to the other disciplines which include math, science, language arts, music, and technology. Again, thematic units are utilized and design briefs are conducted with students using books as references or for the specific problem to be solved.

The focus in the third grade again is problem solving. Emphasis is on team problem solving or as a class. Subjects integrating into this level consists of topics from health, social studies, and science. "Using problem solving early in life helps students become confident, thinking, and leading individuals" (Burchfield, Berry, Cave, Harpine, Monk, Pollard, 1996, p. 19).

The fourth grade curriculum is based on a school-business partnership with a local company. Students learn about the distribution process and how to use map skills to plot the actual route and destination of the products. Guest speakers present to students actual facts about the company, so students get a basic understanding on how the company operates.

Finally, the fifth grade continues to build on and extend technology with problem solving experiences in everything from language arts to math. A problem is presented to students and they use the five step scientific process to solve it.

The Dranesville School District, in Fairfax County, Virginia, uses
Technology Education as an instrument for its students to learn and solve real life problems. A commitment to a Technology Education program with a solid foundation is producing life long learning. Like Ottobine, Dranesville has the same problem solving methodology. The belief on the importance of Technology Education at the elementary school by all the stakeholders is the major thrust in the curriculum (Foreman & Etchison, 1991).

In the Kiel Area School District's case, an example of a Technology Education activity revolves around the Meeme Elementary School fourth graders creating their own business similar to Ottobine. The business incorporates mass production of products around the holiday seasons. Speakers from the local community talk to students about starting a business (Groessel, 1997).

The district's technology plan has been established and is in progress during the time this study is being conducted that encompasses technological literacy. The district's strategic planning committee has created this plan for incorporation in the year 2000.

Kiel Area School's Strategic Plan

Kiel schools have in place four strategic objectives that are being addressed in an effort to bring technology to the district. These objectives contain strategies to meet the district's strategic
plan. Strategic objective number two states, "By the year 2000, we will be providing appropriate access to advanced technology for all educational purposes" (Kiel Area Schools, 1998, p. 3). This objective contains three strategies. One of these strategies deals with the implementation of the long-range technology plan. The technology plan consists of the following, but not limited to:

- New computer lab at Zielanis Elementary School
- Training teachers on how to use and incorporate technology into the curriculum.
- Full-time technology coordinator.
- State information and Technology Literacy Standards.
- Long Range Technology Plan approved by the Department of Public Instruction, January 1998.
- Investigate moving keyboarding to lower grade level.
- Lessons and units relying on other technology sources.
- Complete integration of technology into the curriculum.

The Kiel Area School District's commitment is evident when dealing with technology and the transformation to the twenty-first century. The technology plan containing areas that could be addressed at the lower levels to incorporate Technology Education activities.
Summary

The philosophy of Technology Education at the high school and middle school level is in place at many school districts. On the other hand, the elementary level lacks this philosophy. Gioia and Etchison (1991, p. 14) state, "Implementing Technology Education does not have to be a complicated process. It does involve the building of a philosophy or state of mind as to what technology is (more than just computers), what Technology Education is, the relationship of Technology Education to other disciplines and what learning gains will occur as a result of implementation". With technology changing so rapidly it seems reasonable that elementary students should have the same opportunity to have Technology Education in their classroom.
Chapter III

METHODOLOGY

Introduction

The purpose of this study is to determine what level elementary teachers in the Kiel Area School district understand the philosophy of Technology Education.

Method of Study

This was a descriptive study which used a questionnaire to gather data from the Kiel Area School district’s elementary teachers.

Subjects

There are two elementary schools in the Kiel Area School District. Zielanis Elementary School consists of 20 faculty members and Memme Elementary School contains five. A total of 25 elementary teachers (K-4) were surveyed. Fifth grade teachers were not involved in this research since fifth grade students are required to take Technology Education courses in middle school.

Instrumentation

The researcher designed a questionnaire that contained two sections. The first section pertained to the elementary staff
demographic information. The second section dealt with specific curriculum questions related to Technology Education. Questions in the second section were developed by using the *Wisconsin State Standards for Technology Education* as a reference (Wisconsin Department of Public Instruction, 1998).

Procedure

The researcher administered the questionnaire along with a cover letter (see Appendixes A and B) through the school district’s mail system. Upon completion respondents mailed the surveys directly back to the researcher’s middle school address. Data was collected and analyzed by the researcher. Questionnaires were organized through grade levels, years of teaching experience, and degrees obtained. With this information, perceptions of Technology Education by the respondents were recorded and the researcher was be able to analyze and make recommendations to the school district.
Chapter IV
RESULTS

The purpose of this study was to determine the extent to which elementary staff in the Kiel Area Schools understands the philosophy of Technology Education. This was a descriptive study which used a questionnaire to gather data from the school district's elementary staff at both elementary schools-Meeme and Zielanis (See Appendix A). Zielanis elementary school consists of 20 faculty members and Memme has a staff of five. A total of 25 elementary teachers (K-4) were surveyed, 20 respondents returned the surveys, giving the study an 80% return.

The first section of the survey dealt with basic demographic information. The profile of the respondents consisted of four Pre-K to K staff members, six first-grade staff, four second-grade staff, three third-grade staff, and three fourth-grade staff.

Teaching experience consisted of seven respondents having 1-5 years teaching experience, three respondents having 6-10 years teaching experience, one respondent at 11-15 years teaching experience, two respondents at 16-20 years teaching experience, six at 21 years or more of teaching experience, and one respondent with no reply.
Respondents' highest degree attained in the district ranged from 12 staff receiving Bachelor of Science / Arts degrees, seven receiving Masters degrees and one respondent did not reply. Overall, 85% (17) of the respondents in the past three years have attended some type of technology related conference which includes in-service technology classes offered by the school district. No respondents went to any type of Technology Education conference or seminars.

The second section of the survey dealt with specific questions relating to Technology Education and technology. Problem solving is an intricate part of Technology Education. The researcher asked if elementary staff emphasizes problem solving in the classroom and if it revolved around a thematic unit. All respondents at the elementary level did some type of problem solving. Overall, 50% (10) of the respondents occasionally use a thematic unit and the other 50% (10) of the respondents do not use a thematic unit at all.

Technology Education revolves around hands-on approaches and activities incorporating tools to measure, make things and transfer information. Overall, 85% (17) of the respondents use hands-on activities and approaches in their classroom while 10% (2) of the staff members do not and five percent (1) of the respondents did not reply. Survey results show a number of hands-on activities being used by the respondents. Math and science activities were the
main responses by the elementary staff. Math activities dealt with money, manipulatives used to teach and introduce concepts, measuring with U.S. customary standards, metric, and graphing. Science consisted of weather units, measuring with different science instruments, and changing the shape of wood.

Perceptions of Technology Education with the elementary staff varied from no response to "Back in the stone ages". Fifteen percent of the (3) respondents had no idea what Technology Education classes are doing in the district including one respondent who did not answer the question. Twenty percent (4) of the respondents felt that there were needs to be updated equipment on the district level in the Technology Education area. Other responses, "not emphasized enough" and "Technology Education is important but lacking of equipment at the elementary level" were given.

Respondents were asked as a professional, their opinion to having a K-12 Technology Education program compared to the present 5-12 program. Thirty percent strongly agreed and 40% agreed with having a K-12 program totaling 70% (14) of the respondents. Among the respondents opposing a K-12 Technology Education program, 10% (2) of the respondents stated they were against the program while five percent (1) stated they were strongly against. Fifteen percent (3) of the respondents had no opinion.
Chapter V
SUMMARY

The purpose of this study was to determine if elementary staff in the Kiel Area Schools, in Kiel, Wisconsin, understand the philosophy of Technology Education. This was a descriptive study which used a questionnaire to gather data from the district's 25 elementary staff at both elementary schools-Meeme and Zielanis. With an 80% return the researcher had sufficient data to analyze and compile the findings.

Perceptions of the philosophy of Technology Education varied from staff members. Some staff had no idea or did not respond to the question specifically with perception of Technology Education while one respondent felt that the Technology Education in the district is "back in the stone ages".

The study also focused on demographic portrait of elementary staff presently teaching technology integrated activities. It was concluded that a variety of staff and students use technology in the classroom, generally computers and calculators.

The researcher found that 85% of the respondents attended a technology related classes within the school district. Respondent's perceptions and attitudes toward Technology Education after
attending Technology Education classes, conferences, or seminars could not be analyzed due to lack of attendance.

The review of literature establishes a foundation in which Technology Education at one time in history was at the elementary level when it was called, Handwork (Swierkos & Morse, 1973). During time there was a transformation to Industrial Arts. Both had a basic concept of hands-on work for students with classroom projects. Industrial Arts eventually lost its ties with the elementary school and found its home at the secondary and middle school levels.

A major finding with the questionnaire was that elementary staff uses a number of hands-on activities and thematic units in the areas of language arts, math, reading, and science. Also discovered was an example of a Technology Education related activity revolving around a mass production unit. Fourth graders at Meeme Elementary School created a student business producing holiday ornaments. These are the types of components found in Technology Education programs in the review of literature.

Recommendations

The Kiel Area School District is unique to other districts when it comes to a Technology Education program. The curriculum is based on a 5-12 grade level compared to typical 6-12 or 8-12 programs.
The purpose of this study was to determine if elementary staff in the Kiel Area Schools, in Kiel, Wisconsin, understand the philosophy of Technology Education. Based on the findings of this study the following recommendations were made:

1. An informational meeting should be scheduled for district staff members at the elementary level with the Technology Education instructors presenting the philosophy and objectives of the program.

2. Create a curriculum committee with members of elementary staff, Technology Education instructors, school administrators, curriculum director, and the community. This committee would be responsible to build a philosophy for the elementary level including a long range plan with outcomes for learning to meet Technology Education state standards.

3. Have elementary and Technology Education staff incorporate basic Technology Education activities in the present elementary curriculum.
Bibliography

Grade Level

Years of teaching experience 1-5 6-10 11-15 16-20 +21yrs

Highest Degree Attained B.S. / B.A. M.S. other

1. Do you emphasize problem solving in the classroom? Yes No
If Yes, does it pertain to a thematic unit? Yes No

2. Do you incorporate tools in a “hands-on” approach to observe, measure, make things and transfer information? Yes No
Example: Mass production of items. If Yes, please explain.

3. Do you promote technological awareness to students other than computer? Yes No
If Yes, please list some examples.

4. What is your current perception of Technology Education in our district?

5. As a professional, what is your response to having a K-12 technology education compared to the present 5-12 program.

 Strongly For For Against Strongly Against No Opinion

6. Do you incorporate designing activities in your classroom? Yes No
If yes, please give examples.

7. In the past 3 years, have you been to any technology related conferences, classes or seminars? Yes No
If Yes, please specify.

8. Do you incorporate technology education projects with other disciplines (math, science, etc.)? Yes No
Appendix B

2-24-99

Dear Fellow Staff Member.

I'm in the process of finishing my plan B paper for my Masters degree at UW-Stout. I have a short eight question survey about elementary teachers perceptions of Technology Education. I need your help !! I know that it seems like there is a survey in your school mailbox on a weekly basis, so I made it as short as possible.

The Graduate College at UW-Stout wants me to inform you about the survey. With any thesis there are small risks, but benefits as well. With returning this survey you understand that you are giving your informed consent as participating volunteer in this study. You have the right to refuse to participate. Any questions can be directed to Dave Teske (Middle School Ext. 220).

I would like to have the surveys returned to me through the school mail by Monday, March 1, 1999.

Thank You !!!

Dave Teske