
Teaching Graph Algorithms Using Online Java Package IAPPGA

Dr. Mingshen Wu
Department of Mathematics, Statistics, & Computer Science

University of Wisconsin-Stout, Menomonie, WI 54751
E-mail: wuming@uwstout.edu

Abstract
Teaching and learning graph algorithms is a great
challenge to both instructors and students. Instructors are
seeking software that is specifically designed to
demonstrate the algorithms and for students to learn these
algorithms efficiently. The software program should be
readily available and provide an environment so that
students are able to review the algorithm, solve a practical
problem, and intuitively study the working process via a
graphical display all together. This paper presents an
Internet Accessible Program Package for Graph
Algorithms (IAPPGA) developed by the author. This
package can be accessed via an Internet browser at any
time, anywhere without downloading or installing any
software.

Keywords
Graph, Algorithm, Online, Drawing

1. Introduction
Almost all universities/colleges teach graph algorithms in
a math course and/or a computer science course. A
fundamental activity of applying graph theory is the
ability to learn and implement scientific algorithms on a
computer. This is a challenge for most students enrolled
in a course that studies graph algorithms because
traditional instruction (simply introducing the algorithms
in the classroom) does not help students to apply
algorithms that they have learned. Drawing graphs
certainly is an important way of learning graph theory.
That is why many people are interested in developing the
skill of drawing graphs. One can learn how to draw
graphs via a workshop such as the one at the MAA-AMS
joint meeting (January 5-8, 2005, Atlanta) that provided a
chance to learn graph drawing using Flash. It would be
nice if students could have a software package that
provides the option of drawing graphs online and
visualizing the algorithms while studying graph
algorithms. The graphical feature is very helpful to
enhance students’ understanding of algorithms and their
implementations on a computer. A typical feature of
graph algorithms is optimization such as finding the
shortest distance of a transportation network, the best job
schedule, a minimum spanning tree, or the maximum flow
of networks. These algorithms perform certain steps to
achieve the final answer. Thus, visualizing the working
process is the most efficient way to help students.

Motivated via teaching experience, the author started to
develop an Internet Accessible Program Package for
Graph Algorithms (IAPPGA) several years ago. The
algorithms were selected from the textbooks [1], [2], and
[7]. The purpose of developing IAPPGA is to provide
students a convenient environment to study graph
algorithms and to provide the instructor a tool for
teaching and demonstrating graph algorithms. Several
years ago, I asked my former colleague, Prof. Stuart
Hansen to check my work and comments. I learned that
Dr. Hansen was developing software that visualizes graph
algorithms for teaching Java language during the same
period of time [3]. Based on different purposes, we
independently worked on the visualization of graph
theory algorithms. I also visited quite a number of web
sites to find out other valuable work in this area.
Comparing IAPPGA with some existing work such as
Graph Magic [3], JGraphED [4], and EVEGA [5],
IAPPGA has three significant features: 1. This package
can be accessed via a web browser without downloading
or installing any software; 2. The graphical display of the
graphs a user inputs (either by online drawing or by an
adjacency matrix) is completely adjustable, that is, the
user can freely change the shape of the graphs to study the
solution via the graphical display during executing an
algorithm; and 3. Besides the text display and graphical
display of the solution process, this package also provides
students an online review of the key idea for each
algorithm.

Below, section two introduces the IAPPGA, section three
discusses the impact to teaching and learning, and section
four is the conclusion.

2. The IAPPGA package
This package provides for individual learning at a pace
appropriate for the student. It allows time for learning,
remediation, and practice. IAPPGA also provides
instructors a teaching tool that can be used in or out of the
classroom for graph theory and data structures, and other
computer science courses that are related to graph
algorithms. IAPPGA includes a set of Java applets and
html files so that the user can work online.

2.1 Design of IAPPGA
IAPPGA organizes the basic graph algorithms in different
categories based on the feature of the graph: undirected

 1

graphs and directed graphs. Each category splits into un-
weighted graphs and weighted graphs for fast
accessibility. The algorithms that apply to each type of
graph are assembled together. Users may simply select
the right type of program to avoid extra input information
required by other types of graphs, such as weights. When
I introduced this package to faculty peers, there were
different comments on it – some instructors would like to
see a more integrated format, while some instructors
would like a more straight and simple way to get into the
type of graph needed. Making the link simple is actually
a good idea for fast Internet access.

2.2 Input format
IAPPGA allows users to input a graph either by online
drawing (this works well for small graphs) or by entering
the adjacency matrix (simply type the adjacency matrix
in, or copy and paste the adjacency matrix of a graph into
the required area). The matrix input allows a free format,
i.e., a user may input the adjacency matrix in a single row
or break the entries into several rows as long as the entries
are in the order of top row to bottom row and from left to
right of the adjacency matrix. This package detects any
input errors once the user has submitted the adjacency
matrix, and provides an error message via a display box to
avoid unpredicted wrong solutions. IAPPGA also
controls the possible entering of illegal vertex label(s) that
are provided by a user online. For example, while
working on the flow network, the default source and sink
are the first vertex and the last vertex. However, the user
may change the default setting so that any vertex can be
the source or sink. If a user provided an illegal vertex
label, the program will provide an error message and
prompt the user to change it.

2.3 Graphical display
When a user inputs a graph by its adjacency matrix,
IAPPGA will draw the graph on a graphical canvas. Of
course, the program draws the graph following a
“predetermined rule” and it might not appear as the shape
that the user would like to see. On each working page of
this package the user may drag any vertex of the graph to
another location so that the display of the graph appears
as the user wants. Even for online drawing, the user may
change the shape of the graph while running a specific
program to obtain the best view. IAPPGA can maintain
the graphical display the user adjusted from one algorithm
to another.

2.4 The features of IAPPGA
This program package does not require downloading or
installing any software. A computer with Internet
accessibility is enough to run all the programs. The
package has the following features:
(a) Online user interface for easy use. There are online
instructions to help a user utilize the online drawing

feature. An additional page was designed to introduce the
adjacency matrix to users who are not familiar with graph
theory.
(b) Preview of key ideas and steps for each algorithm
online. Students can get quick help on the key idea of
each algorithm in order to better understand the process.
(c) Ability to solve practical graph theory problems
online. Online drawing allows a user to draw a graph
with up to 25 vertices.
(d) Ability to see and study the solution output that
provides the details of the working process step-by-step
for each algorithm.
(e) A color and adjustable graphical display to visualize
the solution on the actual graph, so the user will have a
better understanding. The adjustability allows a user to
change the shape of the graph to get the best view of the
graph and its solution.
(f) Allows the user to input the information of a graph by
online drawing or using an adjacency matrix – the most
popular input method. The online drawing works well for
small graphs; the adjacency matrix method provides a fast
input method.

2.5 An example of IAPPGA
The Edmonds-Karp Max-flow & Min-Cut algorithm is
one algorithm of IAPPGA and is a popular example for
visualization of a graph algorithm. The following
pictures show how IAPPGA works on this algorithm.
First, assume that the user selected matrix input.

Figure 1: Home page if selecting matrix input for a
weighted digraph.

On Figure 1: The user will input the number of vertices of
the graph in text box (1) and its adjacency matrix into text
area (3), then click on button (4) to submit. After
submitting the data, the user will see the graphical display
on canvas (6) and the matrix submitted in text area (5).
Error messages also appear in (5) if user inputs invalid
information. For users who are not quite familiar with an

2 1

3

4
5 6

 2

adjacency matrix, either they can learn about the djacency
matrix online (from the home page of IAPPGA) or click
on button (2) to get a sample graph with seven vertices
and its data appearing in box (1) and text area (3).

Figure 2: Display after clicking on “Using sample data”
button (2) and then submit button (4) on Figure 1

On Figure 2: A sentence (1) prompts the user to change
the shape of the graph if a better view is desired. The user
may select a program from list box (3) and click on button
(4) to run a practical program. Notice that the graphical
display might be interrupted due to switching layout
pages back and forth. A user may click on button (2) any
time to refresh the graphical display.

Figure 3: Executing Edmonds-Karp Max-Flow & Min-
Cut algorithm [after selecting the program and clicking
button (4) on Figure 2]

On Figure 3: Text area (1) reviews the key idea and steps
of the Edmonds-Karp algorithm. Clicking on button (2)
will show the graph on canvas (8). Here, assume that the

user has changed the graph to the shape as shown on the
canvas. This program allows a user to apply Edmonds-
Karp Max-Flow & Min-cut algorithm with an arbitrary
source and sink. The default source and sink are 1 and n
if the network has n vertices. However, the user may
change the source and sink via input boxes (3) and (4).
Button (6) gives the fast solution and button (7) allows the
user to see the solution process step by step. Whichever
of buttons (6) or (7) was clicked on, the detailed
description of the solution will be displayed in the
solution box (5) and on the graphical display (8).

Figure 4: Step-by-Step solution for finding the maximum
flow and minimum cut

On Figure 4: This page shows the step-by-step solution if
the user clicked on button (7) of Figure 3. After the first
clicking on this button, the label of this button becomes
“Next Step” to prompt the user to keep going until the
process is completed. Repeatedly clicking on the same
button, the working process will be displayed
simultaneously in the solution box (1) and on the
graphical display (2) step-by-step. Figure 4 shows the
stage that the first augmenting path from source to sink
was found: the path is indicated in red color on the
graphical display (2) and stated in solution box (1). The
solution box indicates that the network flow along this
path may be increased by 2 units. The user can check the
data on the graphical display to compare the capacity and
flow on each edge to verify the progress. The program
will repeatedly find the augmenting path until there are no
more such paths.

The final solution including the maximum flow and the
Min-Cut subsets will be displayed in the text area (1)
when it is all done as shown in Figure 5 on next page.

2
1

2

1

3
4

5

6
7 8

2

1

3 4

 3

Figure 5: Final solution of Edmonds-Karp algorithm for
finding Max-Flow & Min-Cut to this network

By combining the key idea of the algorithm and the text
display of the solution along with the graphical display,
students should be able to understand the whole process
of an algorithm. I have developed this package so that
each program will have these features if applicable.

Figure 6: The main page if selecting online drawing a
weighed digraph.

On Figure 6: This figure shows the working environment
if a user selected online drawing. Online instructions are
available for each type of graph. There are four buttons
for adding/removing vertices or edges indicated by (1),
(2), (3), and (4). Each one of these buttons allows the
user to repeatedly add or remove vertices or edges on the
canvas (5). A popup window allows user to input the
weight value. When the pup-up window interrupts the
graphical display, the user may click on button (6) to
refresh the graphical display. Once the drawing is
completed, the user may select a program to execute.

Each program works the same way as if a matrix was
input (introduced earlier).

When selecting online drawing, users would certainly like
to draw the graph in a convenient way – but it might not
be the best way to view the solution. IAPPGA allows
users, while executing an algorithm, to change the shape
of the graph s/he drew to receive the best view.

3. Using IAPPGA in the classroom
I have used this package in my Graph Theory class for
several semesters including an older version of IAPPGA
and the current version. Once I introduced this package
in the classroom and demonstrated it via a few examples,
students can run these programs at home or in a computer
lab without any difficulty. I allowed students to use this
package for their written homework as well, e.g., to
double check their solution if applicable. Homework
programming projects were assigned as two parts: first,
using the online program to find the solution for several
practical graphs and submit a written report of the result;
second, implementing the algorithm on a computer using
a Java language program. Students like IAPPGA and its
features, and have provided valuable feedback. I fixed
quite a few “bugs” based on students’ comments. The
step-by-step solution makes students think, “What will
happen next and why?” All students were able to use this
package to review the key steps of algorithms, solve
practical graph problems, and gain a better understanding
of material.

Since I started using IAPPGA, student’s learning and
performance has improved significantly. Some specific
areas of improvement include:
• With this package, the Instructor does not have to spend
a lot of time drawing pictures and explaining the working
process of an algorithm. Furthermore, this package
allows the instructor to conveniently demonstrate the
algorithm repeatedly using different data. This has
allowed me to cover about 10% more material than when
I was not using the package.
• Students may review the algorithm and its working
process via this package at anytime. When working on
their written homework assignments, students are able to
double check their solution via this package. I found that,
if the assignment is algorithm related, most students can
get sufficient help from this package instead of stopping
by the instructor’s office to ask for further explanation.
As a measure of the impact, the correctness of homework
solutions has increased from 80% to 95%.
• When working on their programming projects, students
have a much faster and better understanding. According
to my records, with this package, I can assign seven to
eight programming projects – two more than without this
package.

1

2 3 4 1

5

6

 4

To my surprise, through using this package, students
seemed eager to write their own program using object-
oriented technique and making their own programs with
GUI features as well, even if it was not required.

4. Conclusion
To teach a graph algorithm, simply providing source code
does not make too much sense. The purpose of IAPPGA
is to help students have a better understanding via solving
a graph problem and investigating the solving procedure.
I have studied other educational web sites such as [8], and
[9]. These web sites are willing to teach graph theory
online. It would be very nice if students could work on
websites that teach graph theory concepts along with an
easy online package to practice and see the applications as
well. IAPPGA is so designed and it is available online. I
invite the instructors from different schools to apply
IAPPGA in the classroom and encourage students to learn
the algorithms via this software.

The author has planned further development of this
package. The main goal (based on user comments and
resources such as [6]) is to add all basic graph algorithms
to IAPPGA. The author has previously written programs
for deadlock detection of computer networks, typical
sorting and searching techniques. These programs will be
added to IAPPGA as well. In order to make this package
more user-friendly and more efficient, the author
appreciates any comments and suggestions. Feedback
may be sent to wuming@uwstout.edu. Programs of
IAPPGA are available online at
http://faculty.uwstout.edu/wuming/Samples/SelectInputM
ethod.html.

REFERENCES
[1] Gary Chartrand and Ortrud R. Oellermann, textbook:
 “Applied and Algorithmic Graph Theory”, 1993.
[2] Thomas Cormen, Charles Leiserson, and Ronald
 Rivest, textbook: “Algorithms”, 1994 (12th Print).
[3] Stuart Hansen, Karen Tuinstra, Jason Pisani
 and Lester I. McCann, Graph Magic: A visual Graph
 Package for Students, Computer Science Education,
 Volume 13, Number 1, March 2003, page 53-66.
[4] Jon Harris’ JGraphED:
 http://www.jharris.ca/JGraphEd/JGraphEd.htm
[5] Khuri, S. and Holzapfel, K. (2001), An educational
 visualization environment for graph algorithms.
 Proceedings of the 6th Annual SIGCSE Conference on
 Innovation and Technology in Computer Science
 Education, pages 101 – 104.
[6] William Kocay and Donald L. Kreher, textbook:
 “Graphs, Algorithms, and Optimization”, 2005.
[7] Douglas B. West, textbook: “Introduction to Graph
 Theory” (2nd edition), 2001.

[8] Simon’s Rock College of Bard, a web site that
 teaches graph theory concepts online:
 http://www.simons-rock.edu/~jlegge/thesis/index.php
 [9] Other samples of graph programs hosted by
 universities (web sites):
 • Department of computer science, University
 of Toronto, Canada:

http://www.dgp.toronto.edu/people/JamesStewar
t/270/9798s/Laffra

 • Fakultät für Informatik der Technischen
 Universität München:

http://wwwmayr.informatik.tu-
muenchen.de/EVEGA/source.html

 • Department of Mathematical Sciences, Northern
 Illinois University, USA:

http://www.math.niu.edu/~rusin/known-
math/index/05CXX.html#COMP

 • Saratov State Technical University, Russia:
 http://www.geocities.com/pechv_ru

 5

mailto:wuming@uwstout.edu
http://faculty.uwstout.edu/wuming/Samples/SelectInputMethod.html
http://faculty.uwstout.edu/wuming/Samples/SelectInputMethod.html
http://www.jharris.ca/JGraphEd/JGraphEd.htm
http://www.simons-rock.edu/%7Ejlegge/thesis/index.php
http://www.dgp.toronto.edu/people/JamesStewart/270/9798s/Laffra
http://www.dgp.toronto.edu/people/JamesStewart/270/9798s/Laffra
http://wwwmayr.informatik.tu-%20%20%20%20%20%20muenchen.de/EVEGA/source.html
http://wwwmayr.informatik.tu-%20%20%20%20%20%20muenchen.de/EVEGA/source.html
http://www.math.niu.edu/~rusin/known-math/index/05CXX.html#COMP
http://www.math.niu.edu/~rusin/known-math/index/05CXX.html#COMP
http://www.geocities.com/pechv_ru

	Department of Mathematics, Statistics, & Computer Science
	
	
	Abstract
	1. Introduction
	4. Conclusion

