Production and Characterization of Lutein Nano-emulsion

Cindy Vang¹, Chong Tai Kim² and Eun Joo Lee¹

¹Department of Food and Nutrition, University of Wisconsin-Stout, Menomonie, WI 54751.
²Research Group of Convergence Technology, Korea Food Research Institute, Gyeonggi-do, 463-746, Korea.

Introduction
Lutein, lipid soluble bioactive compound, can play an important role in eye health, including age-related macular degeneration and cataracts.

Nano-emulsion technology incorporates lipid-soluble bioactive compounds like lutein in emulsion and enable the lipid-soluble compounds in various food matrices, including beverages.

In addition, nano-emulsion (<100 nm droplet size) can improve the functional stability of lutein, which is sensitive to light and oxygen, and deteriorates easily during processing and storage.

Objective
The objectives of this study were to evaluate 1) the optimal conditions for lutein nano-emulsion production, and 2) the physico-chemical properties of lutein nano-emulsion.

Material and Methods
Preparation of lutein nano-emulsion
Two lutein extracts, 95% purity (5 mg, powder form, Caymen Co.) and 20% purity (dissolved in safflower oil, 25 g, Kemin Co.), were purchased.

Various emulsifiers were tested as surfactants and co-surfactants to establish the optimum formula.

<table>
<thead>
<tr>
<th>Emulsifiers</th>
<th>HLB*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium-chain triglycerides</td>
<td>-</td>
</tr>
<tr>
<td>Polyoxyethylene sorbitan monooleate (Twee 80)</td>
<td>15</td>
</tr>
<tr>
<td>Propylene glycol (PG)</td>
<td>2.5</td>
</tr>
<tr>
<td>Ethanol</td>
<td>-</td>
</tr>
<tr>
<td>Lecithin (extracted from soybean)</td>
<td>4</td>
</tr>
<tr>
<td>Sucrose monostearate (SM)</td>
<td>5.9</td>
</tr>
</tbody>
</table>

Lutein extract (95% or 20% purity), Tween 80, water, MCT, and ethanol were mixed as a pre-mixture prepared by modified self-assembly emulsification method.

The mixture was stirred under moderate magnetic stirring for 12 hrs added with 0.01% butylated hydroxyanisole (BHA) and 0.05% sodium azide to prevent oxidation and deterioration.

Pre-mixture was added in drops into aqueous phase with moderate magnetic stirring and then kept stirring for 1 hr.

Results and Discussion
The coarse emulsion was passed through an air-driven microfluidizer (high-pressure homogenizer, model M-110L; Microfluidics, Westwood, MA, USA) operating at 25,000 psi for three cycles.

Particle Size Distribution
The particle size distribution was determined by Nanotrac 250 (Microtrac Inc., Montgomeryville, PA), which is a photon correlation spectroscopy and analyzes the fluctuations in light scattering due to the Brownian motion of the particles. Light scattering was monitored at 25 °C and an angle of 90°.

Electrophoretic Mobility
The electrophoretic mobility was determined by Zetasizer Nanoseries ZS (Malvern Instrument, Worcestershire, UK) to measure the direction and velocity that the nanoemulsion moved in the applied electric field at 633 nm for 1 min. The Smoluchowsky mathematical model was used to convert the electrophoretic mobility into zeta potential values.

The zeta potential was -12.5, -11.4, -19.1, and -33.6 mV at 0, 1, 2, and 3 week of storage, respectively. (unmeasurable after 4 wk).

Conclusion
Lutein nano-emulsion prepared with 95 %-pure lutein was relatively stable during the 3-week storage at 22°C and has a high potential to apply in cold-beverage production.

However, further study is needed to improve the storage stability of lutein nano-emulsion to be used in beverages that require longer storage time.

Acknowledgement
This research was supported by the University of Wisconsin-Stout Research Service (2014-2015 Student Research Grant, Project period: Nov. 1, 2014-May 14, 2015, Grant No.: 131-6-3830007).

References