
AN INTRODUCTION TO LIE ALGEBRAS AND LIE ALGEBRA
COHOMOLOGY

CHRISTOPHER P. BENDEL

1 Introduction

1.1 The goal of these notes is to introduce the reader to the algebraic concept of Lie
algebra cohomology. The goal will be to understand the current status of computations of
Lie algebra cohomology for certain nilpotent Lie algebras over fields of prime characteristic.

We begin by reviewing some basic notions from abstract algebra - fields and vector
spaces. Next we briefly discuss Lie algebras in general and then give examples of some of
the Lie algebras which are of interest to us. Finally, we introduce the notion of Lie algebra
cohomology through a number of examples.

2 Fields

2.1 Informally, a field is a number system in which all four standard arithmetical opera-
tions can be performed satisfying all of our usual properties. (For a more precise definition,
consult an abstract algebra textbook. For example, the set of real numbers - R, the set of
rational numbers - Q, and the set of complex numbers - C are all fields. On the other hand,
the set of integers - Z is not because we cannot always divide. E.g., 2 and 3 are integers but
2/3 is not an integer. Another non-example would be the set S = {x ∈ R | x ≥ 0}, i.e., the
set of non-negative real numbers. In this case, division is not a problem but subtraction is.
E.g., 2.6 and 37.895 are members of S but 2.6− 37.895 is not.

2.2 Modular arithmetic: For our purposes, an important class of fields can be con-
structed using modular arithmetic. Again, we will defer a precise definition to your favorite
textbook and work here with some examples. For a positive integer n (usually at least 2),
we set

Zn = {0, 1, 2, . . . , n− 1}.

For examples, Z4 = {0, 1, 2, 3} and Z5 = {0, 1, 2, 3, 4}. Now, arithmetic is done “mod-n”
and works much like we do “clock arithmetic” which is essentially a mod-12 system. On a
clock, after we get to 12, we start over again at 1. In “mod-n”, n basically is equal to 0.

Date: August 2006.
Research of the author was supported in part by NSF grant DMS-0400558.

1

2 CHRISTOPHER P. BENDEL

That’s our starting over point. Let’s start with Z4. We have

0 + x = x as usual
1 + 1 = 2
1 + 2 = 3
1 + 3 = 0 because “4 = 0”
2 + 2 = 0 because “4 = 0”
2 + 3 = 1 because “5 = 4 + 1 = 1”
3 + 3 = 2 because “6 = 4 + 2 = 2”.

Note that addition is commutative, i.e., the order does not matter.
Similarly, in Z5 we would have

0 + x = x

1 + 1 = 2
1 + 2 = 3
1 + 3 = 4
1 + 4 = 0
2 + 2 = 4
2 + 3 = 0
2 + 4 = 1
3 + 3 = 1
3 + 4 = 2
4 + 4 = 3

For subtraction, there are a couple of approaches. Consider Z4 for example. Then
3 − 1 = 2 as usual. But what about 1 − 3? Normally, we would have 1 − 3 = −2. Here
we have to add 4 (rather than subtract as above) to get an answer between 0 and 3. Since
−2 + 4 = 2, we get 1− 3 = 2. Similarly, 2− 3 = “− 1” = −1 + 4 = 3.

Or in Z5, we have 4− 3 = 1, 3− 4 = “− 1” = −1 + 5 = 4, 2− 4 = −2 + 5 = 3 and so on.
An alternative approach is to talk about additive inverses. Rather than thinking of x−y

as subtraction, we can consider this as an addition problem: x + (−y) where −y is the
additive inverse of y. That is, the number such that y+(−y) = 0. For example, in Z4, from
above we see that −1 = 3, −2 = 2, and −3 = 1. Therefore 2 − 3 = 2 + (−3) = 2 + 1 = 3.
You might try some more examples.

The bottom-line: in Zn, addition and subtraction can always be done and all standard
properties hold.

2.3 Things get more interesting with multiplication and division. Let’s start with multi-
plication. As for addition, one basically does the operation as usual, then if necessary one
subtracts n (or in this case possibly a multiple of n) until one gets a number that resides
in Zn.

LIE ALGEBRA COHOMOLOGY 3

Let’s start with Z4 again:

0 ∗ x = 0 as usual
1 ∗ x = x as usual
2 ∗ 2 = 0 because “4 = 0”
2 ∗ 3 = 2 because “6 = 4 + 2 = 2”
3 ∗ 3 = 1 because “9 = 4 + 4 + 1 = 1”.

Note that we see something here which does NOT satisfy our usual arithmetic properties:
2 ∗ 2 = 0. In ordinary arithmetic, the product of two non-zero numbers is necessarily a
non-zero number! This is one reason why the set Z4 is not a field.

On the other hand, let us look at Z5:

0 ∗ x = 0 as usual
1 ∗ x = x as usual
2 ∗ 2 = 4
2 ∗ 3 = 1 because “6 = 5 + 1 = 1”
2 ∗ 4 = 3 because “8 = 5 + 3 = 3”
3 ∗ 3 = 4 because “9 = 5 + 4 = 4”
3 ∗ 4 = 2 because “12 = 5 + 5 + 2 = 2”
4 ∗ 4 = 1 because “16 = 5 + 5 + 5 + 1 = 1”.

Notice for starters that the problem we saw in Z4 does not happen here. Further, each
non-zero member has a multiplicative inverse. Given a number x, the multiplicative inverse
is usually denoted x−1 and is the number such that x ∗ x−1 = 1. (In the “real” world, we
would think of x−1 as simply 1/x.) Specifically, we see that 1−1 = 1, 2−1 = 3, 3−1 = 2, and
4−1 = 4.

This allows us to define division. For example:

3/2 = 3 ∗ 2−1 = 3 ∗ 3 = 4 or 3/4 = 3 ∗ 4−1 = 3 ∗ 4 = 2.

Defined in this way, the set Z5 satisfies all of the usual properties of arithmetic and is in
fact a field.

Question: What is different about the numbers 4 and 5?

2.4 Modular Fields: Of course there are many answers to the preceding question. By
looking at some more examples, you might conjecture that the key difference is that the
number 5 is prime while the number 4 is not. Indeed, note that if n is not a prime, then
n = pq for some integers p and q with 1 < p, q < n. Then in Zn, we will have p ∗ q = 0 - the
problematic case just like Z4. On the other hand, if n is in fact a prime with a little work
one can show that Zn is in fact a field. We will usually write Zp in this case, for p being a
prime number.

It turns out that there are other fields besides the Zps which satisfy this “modular”
behavior. In general, a field F is said to have characteristic p for a prime number p if for

4 CHRISTOPHER P. BENDEL

all x ∈ F ,
p · x = x+ x+ · · ·+ x︸ ︷︷ ︸

p−times

= 0.

Such fields are either infinite in size or have order pm for a positive integer m.
These so-called modular fields are in contrast to our more familiar fields Q, R, and C

which are said to have characteristic zero since if you start adding a number x to itself you
never get back to 0 unless x was 0 to begin with.

Ultimately, the computations we want to do will be for a field F of prime characteristic
p. For our purposes, it will generally suffice to assume that F is simply Zp.

2.5 Exercises:
(1) Work out the addition and multiplication “tables” for Z3, Z6, Z7, and Z8 to get a feel
for modular arithmetic.

(2) Try some subtraction and division problems in those examples when possible.

3 Vector Spaces

3.1 You should be familiar with the notion of a real vector space from Linear algebra class.
For example, the standard Cartesian plane - R2, or standard three-dimensional Cartesian
space - R3 are our simplest examples of real vector spaces. The key ideas you should recall
are the two basic operations: addition and scalar multiplication, along with the notions of
linear independence/dependence, spanning, basis, and dimension. Please consult a linear
algebra text if you need to review these ideas.

The concepts one learns about for real vector spaces can be extended to a more general
setting. For example, you may have learned about complex vector spaces. In general, vector
spaces are defined over fields. So the standard field R can be replaced by any field F using
all the same basic ideas.

3.2 Example. Let F be any field and consider the vector space

V = F 3 = {(x, y, z) | x, y, z ∈ F}.

This is just like ordinary three space except that the entries of the vector live in F . As a re-
sult, we cannot visualize this geometrically in the same way as real 3-space but algebraically
nothing changes. For addition,

(x1, y1, z1) + (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2)

where the addition within each component is happening within F . For example, suppose
F = Z7, then

(3, 6, 1) + (5, 3, 4) = (1, 2, 5).

Do you agree?
Similarly, the rules for scalar multiplication are as before

a(x, y, z) = (ax, ay, az)

LIE ALGEBRA COHOMOLOGY 5

but again a lies in F and the multiplication occurs in F . For example, again with F = Z7,
we have

4(1, 2, 3) = (4, 1, 5).

Do you agree?

3.3 Functions: In the context of real vector spaces, you studied the notion of a linear
transformation. A linear transformation is simply a function from one vector space to
another satisfying certain properties. In the abstract context of vector spaces, a linear
transformation is also called a vector space homomorphism.

Definition. Given two vector spaces V and W over a field F , a function f : V → W is a
linear transformation if

(1) (addition is preserved) f(v1 + v2) = f(v1) + f(v2) for all v1, v2 ∈ V ;
(2) (scalar multiplication is preserved) f(av) = af(v) for all a ∈ F and v ∈ V .

Recall that when the vector spaces V and W are finite dimensional, then a linear trans-
formation or homomorphism can be represented by a matrix. This can be done in two ways.
Suppose dimV = n and dimW = m. There is an n×m matrix A such that for all v ∈ V

f(v) = vA

where we think of v as a 1× n row vector and use usual matrix multiplication.
For example, let V = R2 and W = R3. Then any 2× 3 matrix defines a linear transfor-

mation f : V →W . Let

A =
(

1 2 3
4 5 6

)
.

Then

f(2,−1) =
(
2 −1

)(1 2 3
4 5 6

)
=
(
−2 −1 0

)
= (−2,−1, 0)

Alternatively, we can use multiplication by a matrix on the left by taking the m × n-
dimensional matrix AT . Then for all v ∈ V

f(v) = AT v

where here we think of v as an n× 1 column matrix. In our example above, we would have

f(2,−1) =

1 4
2 5
3 6

(2
−1

)
=

−2
−1
0

 = (−2,−1, 0).

Recall also the following notions for a linear transformation:

The Kernel: The kernel of f : V → W , usually denoted ker f or kerA (in matrix form),
is ker f = {v ∈ V | f(v) = 0}. That is, all vectors whose output is the zero vector.

The Image: The image of f : V →W , usually denoted Im f or ImA, is Im f = {f(v) | v ∈
V }. That is, the set of all output vectors.

If you recall the notion of a subspace, then the kernel of f is a subspace of V while the
image of f is a subspace of W .

6 CHRISTOPHER P. BENDEL

3.4 The Dual Space: Given a vector space V of dimension n over a field F , there is
corresponding vector spaces, denoted V ∗, called its dual vector space. The definition is
somewhat abstract and subtle:

V ∗ = Hom(V, F) = {f : V → F such that f is a linear transformation}

where F is considered as a one-dimensional vector space. That is, V ∗ consists of all linear
transformations from the vector space V to the vector space F . This set is also a vector
space with addition and scalar multiplication given by addition and scalar multiplication
of functions. It might seem odd to think of functions as vectors but it is acceptable in an
abstract setting. For example, you may have seen vector spaces consisting of polynomials.

The key point for our purposes is that this new vector space V ∗ also has dimension n.
Indeed, the two vector spaces are abstractly the same - they both look like Fn. There’s just
a technical difference in how we think of (or name) elements of the vector spaces.

If V has a basis {v1, v2, . . . , vn}, then a basis for V ∗ is the set of functions {φ1, φ2, . . . , φn}
where for each i, φi is the function defined as follows:

φi(vj) =

{
1 if i = j

0 if i 6= j

and then one extends additively. So for example

φ1(3v1 + 2v4 − 5v6) = 3φ1(v1) + 2φ1(v4)− 5φ1(v6) = 3 ∗ 1 + 2 ∗ 0− 5 ∗ 0 = 3.

Exercise. You might try to show that this set is indeed a basis for V ∗.

Again, the key points for our purposes are that V and V ∗ have the same dimension and
we will use this φ-notation for elements in V ∗.

3.5 Exterior Powers: We need one more notion for vector spaces - the notion of exterior
powers. Suppose V is an n-dimensional vector space over a field F with basis {v1, v2, . . . , vn}.
For each non-negative integer m, we can define another vector space called the mth exterior
power of V which is denoted Λm(V) or often simply as ΛmV . These are mostly easily
defined by identifying a basis for ΛmV . The elements of ΛmV are expressed using so-called
wedge notation.

Let’s consider an example with n = 4. So suppose V has as a basis the set of vectors
{v1, v2, v3, v4}. In what follows, for convenience, we will use the following notation:

V = 〈v1, v2, v3, v4〉.

The point being that the elements inside 〈−〉 will be a basis for the vector space. The actual
vector space then consists of all possible linear combinations of the basis elements.

The exterior powers can then be identified as follows:
• Λ0V = F
• Λ1V = V = 〈v1, v2, v3, v3〉
• Λ2V = 〈v1 ∧ v2, v1 ∧ v3, v1 ∧ v4, v2 ∧ v3, v2 ∧ v4, v3 ∧ v4〉
• Λ3V = 〈v1 ∧ v2 ∧ v3, v1 ∧ v2 ∧ v4, v1 ∧ v3 ∧ v4, v2 ∧ v3 ∧ v4〉
• Λ4V = 〈v1 ∧ v2 ∧ v3 ∧ v4〉
• ΛmV = {0} for all m > 4.

LIE ALGEBRA COHOMOLOGY 7

In general, notice that ΛmV has dimension
(
n
m

)
, the binomial coeffienct which is com-

monly called “n choose m”. So ΛmV = {0} for m > n and there is a symmetry to the
dimensions if one looks at them as a whole.

Note that a choice was made here. For example instead of writing v1 ∧ v2 ∧ v3, one could
just have easily chosen to write v2 ∧ v1 ∧ v3 or v3 ∧ v2 ∧ v1 or To deal with this, the
following rule is established for wedge products:

b ∧ a = −(a ∧ b).

Note that the negative sign acts by scalar multiplication on the vector a∧ b. This can then
be extended to multiple wedges. For example

b ∧ a ∧ c = −(a ∧ b ∧ c)

and
c ∧ b ∧ a = −(c ∧ a ∧ b) = (−1)(−1)(a ∧ c ∧ b) = a ∧ c ∧ b = −(a ∧ b ∧ c).

Note that in the example above the basis elements were listed in a particular order.
This is known as lexicographical ordering based on the initial ordering of basis elements in
V . (Like what one would find in a dictionary based on the standard alphabetical order-
ing A,B,C,) We will consistently use lexicographical ordering when identifying basis
elements of exterior powers.

Exercises:

(1) For the above example, rewrite the following wedge products in standard order with
the appropriate sign: v4 ∧ v3, v2 ∧ v3 ∧ v1, v4 ∧ v1 ∧ v3 ∧ v2.

(2) Suppose dimV = 6 with basis {v1, v2, v3, v4, v5, v6}. Identify a basis for ΛmV for all m,
writing your bases in lexicographical order.

4 Lie algebras

4.1 If you are familiar with the algebraic concept of a ring, then a Lie algebra is something
like a “non-associative ring”. That is, something like a ring with a multiplication that is
not associative. (In the definition of a ring, the multiplication is always associative.) In any
case, the precise definition is as follows:

Definition: A Lie algebra (pronounced “lee”) is first of all a vector space L over a field
F . (Hence we have addition and subtraction as usual along with scalar multiplication by
elements of the field F .) Furthermore, the vector space admits a bracket structure - [,] that
is a multiplication of sorts. That is, given x, y ∈ L, there is a well-defined element [x, y]
which lies in L. The bracket operation must satisfy the following three properties:

(i) The bracket operation is bilinear. I.e., [x1 +x2, y] = [x1, y]+[x2, y] and [x, y1 +y2] =
[x, y1] + [x, y2] for all x, x1, x2, y, y1, y2 ∈ L.

(ii) [x, x] = 0 for all x ∈ L.
(iii) (The Jacobi identity) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ L.
Note that the operation is generally not associative. I.e., the grouping matters, we may

not have [x, [y, z]] = [[x, y], z]. Property (iii) is a substitute of sorts for associativity.

8 CHRISTOPHER P. BENDEL

Exercise: Show that the bracket is anti-commutative. That is, show for all x, y ∈ L that
[x, y] = −[y, x].

This is probably a bit fuzzy but will become more clear with some examples to follow.
The most common examples of Lie algebras arise as certain sets of matrices with the bracket
operation being obtained using ordinary addition and multiplication of matrices.

4.2 sl2(F): We begin with a fundamental example of a Lie algebra - the special linear Lie
algebra of 2× 2 matrices with trace zero. Let F be your favorite field. Then

sl2(F) =
{(

a b
c d

)
| a, b, c, d ∈ F, a+ d = 0

}
.

This is a vector space over F under normal matrix addition and scalar multiplication.

Exercise: Show that a basis for sl2(F) is the set {x, y, h} where

x =
(

0 1
0 0

)
, y =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
.

Hence, sl2(F) is a vector space of dimension 3.

To make this into a Lie algebra, we need to define a bracket operation. We do this as
follows. For A,B ∈ sl2(F), we define

[A,B] = AB −BA
where we use ordinary matrix multiplication and subtraction.

Exercises:

(1) Show that the three properties in Section 4.1 hold.

(2) Compute [h, x], [h, y], and [x, y]. Express your answers in terms of x, y, and h.

4.3 sln(F): More generally, one can consider square matrices of any size which have trace
zero. This set is denoted by sln(F) where n denotes the size of the matrices (i.e., n × n).
We use the same bracket operation.

Exercises: Consider sl3(F)

(1) Show that the following matrices form a basis for sl3(F):

x1 =

0 1 0
0 0 0
0 0 0

 , x2 =

0 0 0
0 0 1
0 0 0

 , x3 =

0 0 1
0 0 0
0 0 0

 ,

y1 =

0 0 0
1 0 0
0 0 0

 , y2 =

0 0 0
0 0 0
0 1 0

 , y3 =

0 0 0
0 0 0
1 0 0

 ,

h1 =

1 0 0
0 −1 0
0 0 0

 , h2 =

0 0 0
0 1 0
0 0 −1

 .

(2) Compute the following (express your answer in terms of xs, ys, and hs):

LIE ALGEBRA COHOMOLOGY 9

• [h1, x1], [h2, x1], [h1, x2], [h2, x2], [h1, x3], [h2, x3]
• [h1, y1], [h2, y1], [h1, y2], [h2, y2], [h1, y3], [h2, y3]
• [x1, x2], [x1, x3], [x2, x3]
• [y1, y2], [y1, y3], [y2, y3]
• [x1, y1], [x1, y2], [x1, y3]
• [x2, y1], [x2, y2], [x2, y3]
• [x3, y1], [x3, y2], [x3, y3]

(3) Do you notice any patterns in those answers?

(4) Consider sl4(F). What would a basis be? Try some computations.

4.4 Simple Lie algebras: Over the complex numbers C, the collection {sln(C)} (over
all integers n ≥ 2) forms an important infinite family of so-called simple Lie algebras. The
precise definition is not important to us, but it turns out that there are four infinite families
of “classical” simple Lie algebras along with five “exceptional” Lie algebras. The other
classical families can also be described as certain collections of matrices but the definitions
are a bit more involved and we omit that for now.

Associated to each simple Lie algebra is a set of data called a root system or root data. We
will discuss this more below. The simple Lie algebras are often referred to in terms of the
type of their root system which is labeled by a letter and number: An, Bn, Cn, Dn, E6, E7,
E8, F4, and G2. The first four are the classical infinite families with n (generally) allowed to
be any positive integer, while the last five are the exceptional types. The subscript denotes
the rank of the root system which will be discussed more below.

For the family of special linear Lie algebras we discussed above, note that the Lie algebra
sln(F) has root system of type An−1. E.g. sl2(F) is of type A1, sl3(F) is of type A2, and
so on.

4.5 Nilpotent Lie algebras: For these simple Lie algebras, we will be interested in
certain special subsets. For sln(F), let un(F) denote the set of strictly lower triangular
n× n matrices. For example,

u2(F) =
{(0 0

a 0

)
| a ∈ F

}
and

u3(F) =

{0 0 0
a 0 0
b c 0

 | a, b, c ∈ F}.
In general, un(F) is simply the subspace with basis {yi} in our above notation.

Exercise. Suppose A,B ∈ un(F). Show that [A,B] ∈ un(F).

Since we know that the bracket structure already satisfies the necessary Lie algebra
properties within sln(F), by the exercise, the subspace un(F) is “closed” under the bracket
operation, and hence un(F) is itself a Lie algebra. Formally, we would say that un(F) is a
Lie subalgebra of sln(F).

10 CHRISTOPHER P. BENDEL

If you look back at your computations in Section 4.3 of brackets between the ys, you
will notice that brackets continue to push down towards the lower left corner. (Something
similar holds for the xs going upward.) This phenomenon can be more precisely described
and leads to the terminology of a nilpotent Lie algebra. For a simple Lie algebra L, we will
be interested in a certain nilpotent Lie subalgebra, usually just denoted u ⊂ L, which you
can think of as being analogous to a un(F).

4.6 Root vectors: Above we mentioned something called a root system associated to a
simple Lie algebra. This is a geometric concept which encodes a good deal of information
about the structure of the Lie algebra. For our purposes, we need a little discussion of this
to understand some standard notation. In particular, each of our Lie algebras has a special
basis (as a vector space) called a Chevalley basis. For sln(F), it is precisely the one given
above. (Recall, that a vector space has infinitely many different bases.) For the Chevalley
basis, a particular notation is used for the basis elements and the notation involves root
vectors.

We will attempt to roughly introduce the ideas through some examples. In general, the
root vectors are defined by considering brackets between hs and xs, and between hs and ys.
They are “ordinary” vectors in the traditional geometric sense.

Example. Consider sl3(F). Recall that [h1, x1] = 2x1, [h2, x1] = −x1. Notice that the
answer in both cases is a multiple of x1. We use these coefficients (the 2 and the −1) to
define a vector. The root vectors are usually denoted by Greek letters. Let α = 〈2,−1〉.
Similarly, looking back at the action of each hi on x2, we set β = 〈−1, 2〉. Do you see where
that comes from? (Note: one might also label these α1 and α2.)

Consider now the action of the hs on x3. We have [h1, x3] = x3 and [h2, x3] = x3. Notice
also that using normal vector addition

α+ β = 〈2,−1〉+ 〈−1, 2〉 = 〈1, 1〉.
Notice anything?!?

Because of this behavior, we label the three basis elements as follows:

x1 = xα, x2 = xβ, x3 = xα+β.

Observe that the ys have a similar pattern.

Excercise. Show that the root vectors corresponding to y1, y2, y3 are −α, −β, and −α−β =
−(α+ β) respectively. (Apply the negative sign as usual for vectors.)

For simplicity, we will write yα for y1 rather than the somewhat more correct notation
y−α, and similarly for the other yis.

Exercise: Work out the root vectors for sl4(F).

For an arbitrary simple Lie algebra L, the idea of the Chevalley basis is that L has a
basis labeled by xs, ys, and hs. The rank of the root system (i.e., the n in type Xn) tells
us the number of hs. Those would usually just be labeled h1, h2, . . .hn. The xs and ys are
labeled by root vectors. There will be precisely n simple roots analogous to the α and β
above. These would usually be labeled as α1, α2, . . . , αn. These will correspond to a certain
collection of the xs. The remaining xs will correspond to root vectors which are obtained as
certain positive linear combinations of the simple roots. For each Lie algebra, the collection

LIE ALGEBRA COHOMOLOGY 11

of these root vectors is well known and can be looked up in tables or using MAGMA. The
collection of root vectors corresponding to the xs are called the positive roots. Each y will
be “dual” to an x and have root vector −α for some positive root α. This collection of root
vectors is called the set of negative roots.

4.7 Examples: To give you an idea of the different root systems, we mention some of the
small rank examples.

Rank 1: There is essentially only one root sysem

• A1 - positive roots: {α}

Rank 2: There are three distinct root systems

• A2 - positive roots: {α1, α2, α1 + α2}
• B2 (or C2) - positive roots {α1, α2, α1 + α2, 2α1 + α2}
• G2 - positive roots {α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2}

5 Lie algebra cohomology

5.1 Given any Lie algebra L over a field F , it is possible to compute something called its
ordinary Lie algebra cohomology. Actually, for each L, there are several “cohomologies.”
More precisely, for each non-negative integer i, there is an ith cohomology “group” which
is denoted Hi(L,F). The H comes from homology, the L and F denote the Lie algebra and
the field, and the i is the particular degree of the cohomology we are interested in.

Aside: the ideas of homology and cohomology are algebraic tools used in a variety of con-
texts to study algebraic and geometric objects. One way to think about homology/cohomology
is that it is a tool which gives partial information about a structure. This may be particu-
larly useful when one does not have a full understanding of a structure. And it can be used
to differentiate structures. A silly example: suppose two similar crimes were committed
and you were trying to deduce whether or not they were committed by the same person.
Suppose you ascertained that one crime was committed by a person with brown hair and
the other by a person with black hair. Evidently they weren’t the same person. (Ignoring
issues of hair-dyeing ...) On the other hand, if say they both had brown hair, then the
crimes might have been committed by the same person. In our context, if two Lie algebras
have different cohomology groups, then they would have to be different Lie algebras. On
the other hand, if their cohomology groups were the same, the Lie algebras might be the
same but we do not know for sure without further investigation.

Historically, this has been one of the main uses of homology/cohomology but there are
many other theoretical applications as well which are too technical to get into here. The
bottom-line is that being able to compute Lie algebra cohomology would give useful infor-
mation of interest in various algebraic settings.

The cohomology groups are defined by considering the following sequence of vector spaces:

F,L∗,Λ2(L∗),Λ3(L∗),Λ4(L∗),

12 CHRISTOPHER P. BENDEL

For the moment we are just considering L as a vector space. Then L∗ denotes the dual
vector space as discussed in Section 3.4. And then we take exterior powers (as high as they
go) as defined in Section 3.5.

The Lie bracket structure comes into play in defining a sequence of linear transformations
between these vector spaces:

F
d0→ L∗

d1→ Λ2(L∗) d2→ Λ3(L∗) d3→ · · · .
We will explain how these maps are defined below. Recall the notions of the kernel and

image of a linear transformation from Section 3.3. It turns out that this sequence of maps
has the very special property that for all i ≥ 0,

Im di ⊂ ker di+1.

Saying that in another way. Suppose x ∈ Λi(L∗), then we always have that di+1(di(x)) = 0.
Or in words, if you do one map and then the next map in the sequence, you always end up
at zero. This property makes the above sequence into what is called a complex. Any time
we have such a phenomenon we can talk about homology/cohomology. At a nuts and bolts
level, the difference between homology and cohomolgy has to do with the indexing. In our
cases the maps go from lower degree to higher degree and so we will get cohomology. If the
maps were going the other way around, we would get homology.

The precise defintion is as follows. For each i ≥ 0,

Hi(L,F) = ker di/ Im di−1.

The object on the right hand side is formally called a quotient (or sometimes factor) space
or group. The precise definition is a little technical involving the notion of cosets. For
our purposes, since we are working with vector spaces, we can think of this informally as
follows.

We know that Im di−1 is a subspace of ker di. Then Hi(L,F) is essentially the portion of
ker di that remains after removing the subspace Im di−1. For example, suppose (using our
basis generating notation)

ker di = 〈v1, v2, v3, v4, v5〉 and Im di−1 = 〈v2, v4〉.

Then Hi(L,F) = “〈v1, v3, v5〉”.
Note that it is not always quite that simple since a basis for Im di−1 does not need to be

a portion of the basis for ker di. But this is the basic idea. In particular, it is always true
that

dim Hi(L,F) = dim ker di − dim Im di−1,

and simply being able to compute this dimension will be interesting for us.

5.2 L = u: Let us now consider what this looks like for our nilpotent Lie algebras u. Recall
from our discussions above that

u = 〈yα | α ∈ Φ+〉.

Here Φ+ denotes the set of positive roots for the given Lie algebra, and again we are using
this basis-generating notation. Then when we take the dual, we will write the basis elements

LIE ALGEBRA COHOMOLOGY 13

as follows:
u∗ = 〈φα | α ∈ Φ+〉.

Aside: We observed in Section 4.6 that each yα properly corresponds to the negative root
−α. After the dualization process, this new element φα honestly does have root (or weight)
α (a positive root).

Example 1. Type A2

u = 〈yα1 , yα2 , yα1+α2〉 and u∗ = 〈φα1 , φα2 , φα1+α2〉

The exterior powers are as follows:

• Λ0u∗ = F
• Λ1u∗ = u∗ = 〈φα1 , φα2 , φα1+α2〉
• Λ2u∗ = 〈φα1 ∧ φα2 , φα1 ∧ φα1+α2 , φα2 ∧ φα1+α2〉
• Λ3u∗ = 〈φα1 ∧ φα2 ∧ φα1+α2〉
• Λiu∗ = {0} for i ≥ 4.

So our complex would look like:

F
d0→ u∗

d1→ Λ2u∗
d2→ Λ3u∗

d3→ 0.

And so trivially we have Hi(u, F) = 0 for i ≥ 4.

Example 2. Type B2

u = 〈yα1 , yα2 , yα1+α2 , yα1+2α2〉 and u∗ = 〈φα1 , φα2 , φα1+α2 , φα1+2α2〉

The exterior powers are as follows:

• Λ0u∗ = F
• Λ1u∗ = u∗ = 〈φα1 , φα2 , φα1+α2 , φα1+2α2〉
• Λ2u∗ = 〈φα1 ∧φα2 , φα1 ∧φα1+α2 , φα1 ∧φα1+2α2 , φα2 ∧φα1+α2 , φα2 ∧φα1+2α2 , φα1+α2 ∧
φα1+2α2〉
• Λ3u∗ = 〈φα1∧φα2∧φα1+α2 , φα1∧φα2∧φα1+2α2 , φα1∧φα1+α2∧φα1+2α2 , φα2∧φα1+α2∧
φα1+2α2〉
• Λ4u∗ = 〈φα1 ∧ φα2 ∧ φα1+α2 ∧ φα1+2α2〉
• Λiu∗ = {0} for i ≥ 5.

So our complex would look like:

F
d0→ u∗

d1→ Λ2u∗
d2→ Λ3u∗

d3→ Λ4u∗
d4→ 0.

And so trivially we have Hi(u, F) = 0 for i ≥ 5.

Exercises: Work out the exterior powers Λiu∗ and complexes for the following types where
the positive roots are listed.

• Type G2: Φ+ = {α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2}
• Type A3: Φ+ = {α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3}
• Type B3: Φ+ = {α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3, α2 + 2α3, α1 + α2 +

2α3, α1 + 2α2 + 2α3}

14 CHRISTOPHER P. BENDEL

5.3 The map d0: We now precisely define each of the maps di. We will work in the
setting of L = u but the definitions hold more generally. The map d0 is simple, it is just
the zero map. That is, d0(x) = 0 for all x ∈ Λ0u∗ = F . Hence,

H0(u, F) = ker d0 = F.

Note that there is no d−1 to consider here.
Note further that Im d0 = {0} ⊂ Λ1u∗ = u∗. Hence

H1(u, F) = ker d1/ Im d0 = ker d1.

5.4 The map d1: The map d1 is where the Lie bracket structure comes into play. Essen-
tially, if one knows all the Lie brackets for L, in principle one has enough information to
compute “everything.”

Formally, the map d1 is defined as a map

d1 : u∗ → (Λ2u)∗.

Note the placement of the parentheses. This is the dual of the second exterior power of
u rather than the second exterior power of the dual of u. (It turns out that those objects
are in fact isomorphic, meaning they are essentially the same from an algebraic perspective
although not honestly equal.) The map is defined to be dual to the bracket operation.

Precisely, given an element ψ ∈ u∗ (remember that u∗ consists of functions), we need to
define a new function d1(ψ) which will be a map

d1(ψ) : Λ2u→ F.

A basis for u consists of the elements of the form yα ∧ yβ and one defines

d1(ψ)(yα ∧ yβ) = −cα,β ∈ F
where [yα, yβ] = cα,βyα+β. Note that this may be zero and the order is important!

While it is worth trying to understand that definition, it may be a little subtle depending
on your background. So here is a more “user-friendly” way of defining the map d1. We can
more directly define it as a map

d1 : u∗ → Λ2u∗

by defining it on basis elements of u∗.
A basis element of u∗ is a φσ for some σ ∈ Φ+. Recall also that elements of Λ2u∗ are

linear combinations of elements of the form φα ∧ φβ for α, β ∈ Φ+. So we must map φσ to
some such linear combination. And we do that as follows:

d1(φσ) =
∑

α+β=σ

−cα,βφα ∧ φβ

where the sum runs over all distinct pairs {α, β} with α+ β = σ and as above

[yα, yβ] = cα,βyα+β = cα,βyσ.

This may still be a bit fuzzy so let’s work out some examples.

Example. Type A2

u = 〈yα1 , yα2 , yα1+α2〉 and u∗ = 〈φα1 , φα2 , φα1+α2〉

LIE ALGEBRA COHOMOLOGY 15

First we work out all the brackets for u (which you did in Section 4.2):
• [yα1 , yα2] = −yα1+α2

• [yα1 , yα1+α2] = 0
• [yα2 , yα1+α2] = 0.

To compute d1, take a basis element of u∗ and proceed as follows:
• φα1 : Does yα1 appear on the right hand side above? No. Then d1(φα1) = 0.
• φα2 : Does yα2 appear on the right hand side above? No. Then d1(φα2) = 0.
• φα1+α2 : Does yα1+α2 appear on the right hand side above? Yes. How many times?

Just once - in the first line. Then we get

d1(φα1+α2) = −(−1)φα1 ∧ φα2 = φα1 ∧ φα2 .

Let’s explain that last line a bit more. The first negative sign comes from the definition.
The (−1) comes from the negative sign that appears in the bracket computation above with
the ys. Then we write the φs in the same order as the ys appeared. Make sense? Let’s look
at another example.

Example. Type B2.

u = 〈yα1 , yα2 , yα1+α2 , yα1+2α2〉 and u∗ = 〈φα1 , φα2 , φα1+α2 , φα1+2α2〉
The brackets are as follows. (These can be computed using MAGMA for example.)
• [yα1 , yα2] = −yα1+α2

• [yα1 , yα1+α2] = 0
• [yα1 , yα1+2α2] = 0
• [yα2 , yα1+α2] = −2yα1+2α2 .
• [yα2 , yα1+2α2] = 0
• [yα1+α2 , yα1+2α2] = 0

Then we get
• d1(φα1) = 0
• d1(φα2) = 0
• d1(φα1+α2) = −(−1)φα1 ∧ φα2 = φα1 ∧ φα2

• d1(φα1+2α2) = −(−2)φα2 ∧ φα1+α2 = 2φα2 ∧ φα1+α2

Do you agree?
Looking at these examples one can observe a general phenomenon.

Fact. If σ ∈ Φ+ is a simple root, then d1(φσ) = 0.

Exercises. Work out the map d1 in the following cases:

(1) Type G2. Recall that

Φ+ = {α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2}
and the non-zero brackets are as follows: (i.e., the bracket of any other pair of ys will be
zero)

• [yα1 , yα2] = −yα1+α2

• [yα1 , yα1+α2] = −2y2α1+α2

• [yα1 , y2α1+α2] = −3y3α1+α2

16 CHRISTOPHER P. BENDEL

• [yα2 , y3α1+α2] = −y3α1+2α2 .
• [yα1+α2 , y2α1+α2] = 3y3α1+2α2

Hint: d1(φ3α1+2α2) will involve a linear combination of terms. Why?

(2) Type A3: Φ+ = {α1, α2, α3, α1 +α2, α2 +α3, α1 +α2 +α3} and you previously computed
the brackets.

(3) Type B3: Φ+ = {α1, α2, α3, α1 +α2, α2 +α3, α1 +α2 +α3, α2 + 2α3, α1 +α2 + 2α3, α1 +
2α2 + 2α3} and the non-zero brackets are as follows:

• [yα1 , yα2] = −yα1+α2

• [yα1 , yα2+α3] = −yα1+α2+α3

• [yα1 , yα2+2α3] = −yα1+α2+2α3

• [yα2 , yα3] = −yα2+α3

• [yα2 , yα1+α2+2α3] = −yα1+2α2+2α3 .
• [yα3 , yα1+α2] = yα1+α2+α3

• [yα3 , yα2+α3] = −2yα2+2α3

• [yα3 , yα1+α2+α3] = −2yα1+α2+2α3

• [yα1+α2 , yα2+2α3] = yα1+2α2+2α3

• [yα2+α3 , yα1+α2+α3] = −2yα1+2α2+2α3

5.5 Computing H1(u, F): Before proceeding to the higher di maps, let’s stop and take
a look at what H1(u, F) is. Recall from Section 5.3 that H1(u, F) = ker d1. Once we have
the d1 map, this is fairly straightforward to compute. Let’s go back to our examples.

Example. Type A2

We have
H1(u, F) = ker d1 = 〈φα1 , φα2〉

Example. Type B2

We also have
H1(u, F) = ker d1 = 〈φα1 , φα2〉

unless What might happen?
That’s right. Recall our discussion of modular fields from Section 2. If F = Z2 for

example (or any field of characteristic 2), then d1(φα1+2α2) = 0 because the coefficient of 2
becomes zero. And so in that case

H1(u, F) = ker d1 = 〈φα1 , φα2 , φα1+2α2〉
has dimension 3.

Note that for a modular field of characteristic p > 2, we will get the “generic” answer
as in characteristic zero. This example hints at exactly the question we are interested in
investigating. When F = C (characteristic zero), there is a beautiful theorem of Bertram
Kostant [Kos] which gives a description of Hi(u,C) for all i ≥ 0. In particular,

H1(u,C) = 〈φα | α ∈ Φ+ is simple 〉.
Over modular fields, in more recent work, Jens Jantzen [Jan2] computed H1(u, F) for all
(algebraically closed) fields of prime characteristic p. (An algebraically closed field is one
like the complex numbers where every polynomial can be factored completely into linear

LIE ALGEBRA COHOMOLOGY 17

factors. Recall for example that this fails over say the real or rational numbers. E.g., x2 + 1
does not factor over the reals but does factor as (x−i)(x+i) over the complex numbers.) He
showed that the generic answer still holds as long as p > 3. For p = 2, one gets non-generic
answers in types Bn, Cn, F4, and G2. For p = 3, one only gets a non-generic answer in type
G2.

Exercises. Compute H1(u, F) for types G2, A3, and B3. Consider the possibility that F
may be a modular field.

5.6 The Image of d1: In order to compute H2(u, F), we not only need to know the map
d2 (which we will look at shortly) in order to compute ker d2, but we also need to know
Im d1. Since we have just been talking about d1, let’s compute the image for some examples
to see how that works. Remember that the image of d1 is a subspace of Λ2u∗. From the
results in Section 5.4, we get the following.

Excercise: Type A2

Im d1 = 〈φα1 ∧ φα2〉.

Exercise: Type B2

Im d1 = 〈φα1 ∧ φα2 , φα2 ∧ φα1+α2〉
as long as p = 0 or p ≥ 3. But if p = 2, then

Im d1 = 〈φα1 ∧ φα2〉.

This is an important point - not only can the kernel “change” in a modular setting but
also the image can. Hence there are two ways the cohomology can be affected when one
considers a modular setting.

Exercises. Compute Im d1 for types G2, A3, and B3. For what primes p is the answer
different from the generic answer?

5.7 The map d2: For i > 1, the higher di maps are defined recursively by a “signed”
product rule. For d2, we need a map

d2 : Λ2u∗ → Λ3u∗.

For a basis element φα ∧ φβ ∈ Λ2(u∗),

d2(φα ∧ φβ) = d1(φα) ∧ φβ − φα ∧ d1(φβ).

The definition is fairly straightforward but there are a couple of subtle issues that one needs
to be aware of. Let’s look at some examples to see how this works.

Example. Type A2

Λ2u∗ = 〈φα1 ∧ φα2 , φα1 ∧ φα1+α2 , φα2 ∧ φα1+α2〉
From our computations of d1 in Section 5.4, we get the following:

18 CHRISTOPHER P. BENDEL

d2(φα1 ∧ φα2) = d1(φα1) ∧ φα2 − φα1 ∧ d1(φα2)
= 0 ∧ φα2 − φα1 ∧ 0
= 0− 0 = 0.

d2(φα1 ∧ φα1+α2) = d1(φα1) ∧ φα1+α2 − φα1 ∧ d1(φα1+α2)
= 0 ∧ φα1+α2 − φα1 ∧ φα1 ∧ φα2

= 0− 0 = 0.

Note: in this case, the latter term is zero because of the repetition of φα1 which is not
allowed in an exterior power. A similar thing happens with

d2(φα2 ∧ φα1+α2) = d1(φα2) ∧ φα1+α2 − φα2 ∧ d1(φα1+α2)
= 0 ∧ φα1+α2 − φα2 ∧ φα1 ∧ φα2

= 0− 0 = 0.

So in this (rather simple) case, d2 is just the zero map.

Example. Type B2.

Λ2u∗ = 〈φα1∧φα2 , φα1∧φα1+α2 , φα1∧φα1+2α2 , φα2∧φα1+α2 , φα2∧φα1+2α2 , φα1+α2∧φα1+2α2〉
Several of the computations work out as above and we leave them to you to check, and

we provide details for some of the more “interesting” ones.

d2(φα1 ∧ φα2) = 0

d2(φα1 ∧ φα1+α2) = 0

d2(φα1 ∧ φα1+2α2) = d1(φα1) ∧ φα1+2α2 − φα1 ∧ d1(φα1+2α2)

= 0− φα1 ∧ (2φα2 ∧ φα1+α2)
= −2φα1 ∧ φα2 ∧ φα1+α2

d2(φα2 ∧ φα1+α2) = 0

d2(φα2 ∧ φα1+2α2) = 0

d2(φα1+α2 ∧ φα1+2α2) = d1(φα1+α2) ∧ φα1+2α2 − φα1+α2 ∧ d1(φα1+2α2)

= φα1 ∧ φα2 ∧ φα1+2α2 − φα1+α2 ∧ (2φα2 ∧ φα1+α2)
= φα1 ∧ φα2 ∧ φα1+2α2 − 0
= φα1 ∧ φα2 ∧ φα1+2α2

Exercises. Work out the map d2 for types G2, A3, and B3.

5.8 Computing H2(u, F): Now that we have the maps d1 and d2, we can compute
H2(u, F).

LIE ALGEBRA COHOMOLOGY 19

Example. Type A2

From Section 5.7, we have

ker d2 = Λ2u∗ = 〈φα1 ∧ φα2 , φα1 ∧ φα1+α2 , φα2 ∧ φα1+α2〉.
And from Section 5.6, we have

Im d1 = 〈φα1 ∧ φα2〉.
Hence,

H2(u, F) = ker d2/ Im d1 = “〈φα1 ∧ φα1+α2 , φα2 ∧ φα1+α2〉”
has dimension 2.

Example. Type B2

From Section 5.7, we have

ker d2 = 〈φα1 ∧ φα2 , φα1 ∧ φα1+α2 , φα2 ∧ φα1+α2 , φα2 ∧ φα1+2α2〉.
Unless p = 2, in which case

ker d2 = 〈φα1 ∧ φα2 , φα1 ∧ φα1+α2 , φα1 ∧ φα1+2α2 , φα2 ∧ φα1+α2 , φα2 ∧ φα1+2α2〉.
And from Section 5.6, we have

Im d1 = 〈φα1 ∧ φα2 , φα2 ∧ φα1+α2〉.
Unless p = 2, in which case

Im d1 = 〈φα1 ∧ φα2〉.
Hence, we get for p 6= 2,

H2(u, F) = ker d2/ Im d1 = “〈φα1 ∧ φα1+α2 , φα2 ∧ φα1+2α2〉”
has dimension 2. While for p = 2,

H2(u, F) = ker d2/ Im d1 = “〈φα1 ∧ φα1+α2 , φα1 ∧ φα1+2α2 , φα2 ∧ φα1+α2 , φα2 ∧ φα1+2α2〉”
has dimension 4.

Exercises. Compute H2(u, F) for types G2, A3, and B3.

5.9 Higher dis: For higher dis a similar formula can be used. Generally, we will use the
following formula for

di : Λiu∗ → Λi+1u∗.

We have

di(φα1 ∧ φα2 ∧ · · · ∧ φαi) = d1(φα1) ∧ φα2 · · · ∧ φαi − φα1 ∧ di−1(φα2 ∧ · · · ∧ φαi).

Note. There are in fact many ways to define di. In general, one can write i = m + n for
two positive integers m,n. Then an element of Λiu∗ can be thought of as φ1 ∧ φ2 where
φ1 ∈ Λmu∗ and φ2 ∈ Λnu∗. (That is each of φ1 and φ2 might represent a wedge of several
φs.) Then one has

di(φ1 ∧ φ2) = dm(φ1) ∧ φ2 + (−1)mφ1 ∧ dn(φ2).

Our definition above simply corresponds to the case m = 1, n = i− 1.

Example. Type A2

20 CHRISTOPHER P. BENDEL

Since Λ4u∗ = 0, we necessarily have d3 = 0 (as well as all higher maps). You might
try applying the above formula to see that one does indeed get the zero map. Hence
ker d3 = Λ3u∗. Also, from above, we see that Im d2 = {0}. Hence H3(u, F) = Λ3u∗ is one
dimensional. And all higher cohomology groups are zero.

Example. Type B2

From our computations of d1 and d2 above, we have

d3(φα1 ∧ φα2 ∧ φα1+α2) = d1(φα1) ∧ φα2 ∧ φα1+α2 − φα1 ∧ d2(φα2 ∧ φα1+α2)
= 0− 0 = 0

d3(φα1 ∧ φα2 ∧ φα1+2α2) = d1(φα1) ∧ φα2 ∧ φα1+2α2 − φα1 ∧ d2(φα2 ∧ φα1+2α2)
= 0− 0 = 0

d3(φα2 ∧ φα1+α2 ∧ φα1+2α2) = d1(φα2) ∧ φα1+α2 ∧ φα1+2α2 − φα2 ∧ d2(φα1+α2 ∧ φα1+2α2)
= 0− φα2 ∧ φα1 ∧ φα2 ∧ φα1+2α2

= 0− 0 = 0

Thus d3 = 0. So ker d3 = Λ3u∗. From Section 5.7, for p 6= 2,

Im d2 = 〈φα1 ∧ φα2 ∧ φα1+α2 , φα1 ∧ φα2 ∧ φα1+2α2〉.

And so
H3(u, F) = “〈φα2 ∧ φα1+α2 ∧ φα1+2α2〉”

has dimension 1.
But, for p = 2, we have

Im d2 = 〈φα1 ∧ φα2 ∧ φα1+2α2〉.

And so
H3(u, F) = “〈φα1 ∧ φα2 ∧ φα1+α2 , φα2 ∧ φα1+α2 ∧ φα1+2α2〉”

has dimension 2.
Since d3 = 0, d4 = 0 also (as it must since Λ5u∗ = 0). Then we have

H4(u, F) = Λ4u∗

has dimension 1.
Indeed, it is not hard to show that the “top” cohomology group always has dimension 1.

Fact. Suppose dim u = n. Then

Hn(u, F) = Λnu∗,

which has dimension 1.

Proof. We know that dn : Λnu∗ → Λn+1u∗ = {0} is necessarily the zero map. Hence
ker dn = Λnu∗. So we need to look at dn−1. We want to show that dn−1 = 0 also. This
claim follows by looking at roots/weights. You may have noticed that each di preserves the
total sum of the roots. Since Λnu∗ has as a single basis element the wedge of each distinct
φσ for σ ∈ Φ+. So the total weight is the

∑
σ∈Φ+ σ. On the other hand, the weight of

LIE ALGEBRA COHOMOLOGY 21

an element of Λn−1u∗ will be the sum of all but one of the positive roots. Hence, the two
weights cannot possibly agree. Hence dn−1 is necessarily zero. �

Exercises. Work out the higher dis and cohomology groups for type G2, A3, and B3.

6 Known Results

6.1 As mentioned above, Hi(u,C) was computed in all degrees by Kostant [Kos]. Beyond
degree 1, the precise formula is a bit too technical for us at this point.

In prime characteristic p, it was shown by Friedlander-Parshall [FP] and Polo-Tilouine
[PT] that the “same” answer (as in characteristic zero) holds for Hi(u, F) as long as p is
sufficiently large. Precisely, the “generic” answer holds if p ≥ h− 1, where h for each type
is given below. (The number h is called the Coxeter number of the root system.)

Type An Bn Cn Dn E6 E7 E8 F4 G2

h n+ 1 2n 2n 2n− 2 12 18 30 12 6
For p ≤ h, the answer is generally unknown. Although some results are known in special
cases and in low degrees. As mentioned above, H1(u, F) was computed over fields of char-
acteristic p for all primes by Jantzen [Jan2]. The generic answer holds as long as p > 3.
H2(u, F) was computed over fields of characteristic p ≥ 3 by Bendel-Nakano-Pillen [BNP].
Again, the generic answer holds for p > 3.

Our Goal: Use the software MAGMA [BC, BCP] and our own programming to make
computations of Hi(u, F) in unknown cases.

6.2 MAGMA: The software MAGMA is a product of the University of Sydney. It is a
symbolic algebra package that can do numerous algebraic computations. For our purposes,
there are a couple of key uses. First, it includes the basic Lie algebra structures that we
want to work with. For each type, it can generate all of the Lie brackets, which you will
recall, is essentially all the information we need to compute Lie algebra cohomology. Given
a linear transformation, the program can also compute kernels and images (and even the
more technical quotient space).

From a programming standpoint, our task then is to write code that will construct the
di maps in a MAGMA compatible manner.

6.3 Current Status: To date, several “programs” have been developed in this project.
Here is a brief summary of them:

• chev.txt: This is a MAGMA program which will input a simple Lie algebra type
and return the positive roots along with all of the non-trivial brackets among the
yαs in u. A key point is that MAGMA orders the roots in a certain way and so we
must keep track of that in our further computations.
• d1.txt: This is a MAGMA program which will create the d1-map. The map is given

in matrix form. More precisely, the result is a matrix D1 which is an n×
(
n
2

)
matrix

(where dim u∗ = n) so that the transformation is done by right multiplication. That
is, consider v ∈ u∗ as a row matrix. Then

d1(v) = vD1

22 CHRISTOPHER P. BENDEL

is also a row vector in Λ2u∗.
• lambda.txt: This is a MAGMA program which gives the ordered basis in Λiu∗ by

using lexicographical ordering based on the initial ordering of u∗.
• Matrix.java: This is a java program that inputs the d1-map in matrix form and

will output the di-map for any desired i as an array representing a matrix. (Right
multiplication is used as above.) Note that the lexicographical ordering is also
embedded within this program.
• toMagma.txt: This is a MAGMA program which will input a text array (e.g., such

as one created by the Matrix.java program) into MAGMA as a matrix. That is,
into a format which MAGMA recognizes as a matrix on which computations (e.g.,
kernel, image, . . .) can be made.

The current programs create “matrices” with integer entries (basically working over the
field of rational numbers). We can easily change the field once we have the matrix in
MAGMA. Here are a few basic MAGMA commands.

Let A be a matrix in MAGMA.
• Kernel(A); - computes the kernel of A.
• Dimension(Kernel(A)); - computes the dimension of the kernel. The Dimension(-)

command can be applied to any vector space.
• Image(A); - computes the image of A.
• Dimension(Image(A)); - computes the dimension of the image.
• AA := Matrix(GF(p),A); - creates a new matrix with name AA whose entries are

those of A but taken modulo p. One would put in a particular value for p.

6.4 Results to date. We have been able to use the above programs to at least make
computations of the dimensions of the cohomology groups in fairly low rank. (The rank
is the number of simple roots.) We have complete information in types A≤4, B≤3, C≤3,
and D4. Unfortunately, almost all of those could be done by hand. We do have partial
computations for somewhat higher ranks. All our computations can be found in another
file.

6.5 Next Steps: At this point this point, the computations are limited in size by memory
capabilities of the computers being used. Some further results have been obtained by
removing rows and columns of the resulting matrices which are entirely zero. This can be
done with the program RemoveZeros.java.

Let A be a square matrix and let Az be the matrix with all zero rows and columns
removed. Note that we have the following basic facts:

(1) dim kerA = dim kerAz +Nr;
(2) dim ImA = dim ImAz,

where Nr denotes the number of zero rows that were removed from A.

7 Lie Subalgebras

7.1 Given a simple Lie algebra L, our attention has thus far focused on the “lower tri-
angular” nilpotent Lie subalgebra u ⊂ L. Of interest are certain subalgebras of u. More

LIE ALGEBRA COHOMOLOGY 23

precisely, given L, let ∆ denote the set of simple roots. E.g., for type A3, ∆ = {α1, α2, α3}.
Let J be a subset of ∆. E.g., J = {α1} or J = ∅ or J = ∆ or Associated to J will be
a subalgebra uJ ⊂ u. We will describe how these are obtained below.

7.2 Levi Factors: Let L, ∆, and J be as above. Recall that L has a basis consisting of
“upper triangular” elements xα, “lower triangular” elements yα, and “diagonal” elements
hi. E.g., L = sl3(F) has a basis {xα1 , xα2 , xα1+α2 , yα1 , yα2 , yα1+α2 , h1, h2}. Given a subset
J ⊂ ∆, we can associate to L a so-called Levi factor denoted LJ which is the Lie algebra
generated by all the “diagonal” elements (the his) along with all of the xσs and yσs such
that σ is a linear combination of root vectors in J . Note that this will in fact be a Lie
subalgebra. That is, the subset will be closed under the bracket operation.

For example, let’s look at all the possibilities for J for sl3(F) (Type A2):
• J = ∅: LJ = 〈h1, h2〉
• J = {α1}: LJ = 〈xα1 , yα1 , h1, h2〉
• J = {α2}: LJ = 〈xα2 , yα2 , h1, h2〉
• J = {α1, α2} = ∆: LJ = 〈xα1 , xα2 , xα1+α2 , yα1 , yα2 , yα1+α2 , h1, h2〉 = L

Notice that if J = ∅, then LJ simply consists of the “diagonal” elements. This is usually
cold the torus or toral subalgebra T of L. At the other extreme, if J = ∆, then LJ = L.

7.3 Exercises: Work out all of the Levi factors LJ for all possible J ⊂ ∆ for the Lie
algebras of type B2, G2, A3, and B3. See Section 5.2 for a list of the positive roots in those
cases.

7.4 Nilpotent Lie Subalgebras: Having defined the Levi factor LJ ⊂ L for a subset
J ⊂ ∆, we can now define the corresponding nilpotent Lie subalgebra uJ ⊂ u. Note that we
chose to work with “lower triangular” elements (or negative root vectors) when defining u.
One could make an analogous construction working with the “upper triangular” elements
(or positive root vectors) as well. The key is that however u is defined, we want our uJ to
be a subset of u.

The definition is as follows:

uJ = 〈yσ : yσ ∈ u and yσ /∈ LJ〉.

Note that this will in fact be a Lie subalgebra. That is, the subset uJ will be closed under
the bracket operation. Do you see why?

For example, let’s look at all possible uJ for L = sl3(F) as above.
• J = ∅: uJ = 〈yα1 , yα2 , yα1+α2〉 = u
• J = {α1}: uJ = 〈yα2 , yα1+α2〉
• J = {α2}: uJ = 〈yα1 , yα1+α2〉
• J = {α1, α2} = ∆: uJ = ∅

Notice that the behavior here is in some sense opposite of that above - when J = ∅, uJ
is simply u, and when J = ∆, uJ = ∅.

7.5 Exercises: Work out all of the nilpotent Lie subalgebras uJ for all possible J ⊂ ∆
for the Lie algebras of type B2, G2, A3, and B3.

24 CHRISTOPHER P. BENDEL

7.6 Cohomology: For each J , we can now consider the cohomology groups Hi(uJ , F).
The definitions are exactly the same. We are just working with a smaller Lie algebra. Let’s
look at a couple examples.

Example 1. Type A2 with J = {α1}
uJ = 〈yα2 , yα1+α2〉 and u∗J = 〈φα2 , φα1+α2〉

The exterior powers are as follows:
• Λ0u∗J = F
• Λ1u∗J = u∗J = 〈φα2 , φα1+α2〉
• Λ2u∗J = 〈φα2 ∧ φα1+α2〉
• Λiu∗J = 0 for i ≥ 3

So our complex would look like: F
d0→ u∗J

d1→ Λ2u∗J
d2→ 0.

From Sections 4.2 or 5.4, the only bracket is:
• [yα2 , yα1+α2] = 0

It is easy to see then that d1 = 0 and so also d2 = 0. Therefore we simply have
H1(uJ , F) = u∗J and H2(uJ , F) = Λ2u∗J . Notice that the first cohomology is not just the
simple roots anymore. Rather it is what one might call the “simple-like” roots. Note also
that one will get essentially the same answer for J = {α2}. Do you see why?

Example 2. Type B2 with J = {α1}
uJ = 〈yα2 , yα1+α2 , yα1+2α2〉 and u∗J = 〈φα2 , φα1+α2 , φα1+2α2〉

The exterior powers are as follows:
• Λ0u∗J = F
• Λ1u∗J = u∗J = 〈φα2 , φα1+α2 , φα1+2α2〉
• Λ2u∗J = 〈φα2 ∧ φα1+α2 , φα2 ∧ φα1+2α2 , φα1+α2 ∧ φα1+2α2〉
• Λ3u∗J = 〈φα2 ∧ φα1+α2 ∧ φα1+2α2〉
• Λiu∗J = 0 for i ≥ 4

So our complex would look like: F
d0→ u∗J

d1→ Λ2u∗J
d2→ Λ3u∗J

d3→ 0.

From Section 5.4, the brackets are:
• [yα2 , yα1+α2] = −2yα1+2α2

• [yα2 , yα1+2α2] = 0
• [yα1+α2 , yα1+2α2] = 0

Then we get
• d1(φα2) = 0
• d1(φα1+α2) = 0
• d1(φα1+2α2) = 2φα2 ∧ φα1+α2

Therefore we get that

H1(uJ , F) = ker d1 = 〈φα1 , φα1+α2〉
unless p = 2, in which case

H1(uJ , F) = 〈φα2 , φα1+α2 , φα1+2α2〉 = u∗J .

LIE ALGEBRA COHOMOLOGY 25

In either case, notice again that the answer is not just the simple roots.
We see also that

Im d1 = 〈φα2 ∧ φα1+α2〉
unless p = 2, in which case

Im d1 = {0}.
Consider now the map d2. One can check that d2 = 0 in all cases. Do you see why?

Therefore we get that

H2(uJ , F) = ker d2/ Im d1 = “〈φα2 ∧ φα1+2α2 , φα1+α2 ∧ φα1+2α2〉”
unless p = 2, in which case

H2(uJ , F) = 〈φα2 ∧ φα1+α2 , φα2 ∧ φα1+2α2 , φα1+α2 ∧ φα1+2α2〉 = Λ2u∗J .

Finally, d3 = 0 and H3(uJ , F) = 〈φal2 ∧ φα1+α2 ∧ φα1+2α2〉 in all cases.

7.7 Exercises: Compute the cohomology for the following cases:
• Type A2 with J = {α2}
• Type B2 with J = {α2}
• Type G2 with J = {α1}
• Type G2 with J = {α2}
• Type A3 with J = {α1}
• Type A3 with J = {α1, α2}
• Type A3 with J = {α1, α3}

7.8 Current Tasks: As above, we want to make computer computations.

Task 1. Write a Magma routine that can input a Lie algebra type and a specified subset
J ⊂ ∆, and return the positive roots which correspond to elements in uJ and the number
thereof.

Task 2. Once Task 1 is accomplished, the next step is to extract the non-trivial brackets
for uJ from the entire collection for u.

Task 3. Once Tasks 1 and 2 are completed, the next step is to modify the d1.txt Magma
program to produce the d1-matrix for uJ .

Task 4. Once the d1-matrix has been constructed, we can compute H1(uJ , F).

Task 5. More importantly, we can then feed the d1-matrix into the Matrix3.java program
as before to compute higher cohomology groups.

Note. While this process is interesting in general, for a given Lie algebra L and prime p,
there is a specific subset J of special interest.

7.9 Special J : We record here the special subsets J ⊂ ∆ corresponding to a given prime
p for “small” primes (p ≤ h − 1) but not too small. The elements of J are listed by
the subscript, e.g. the simple root αi is denoted simply by i. The numbering follows the
Bourbaki ordering.

Type An: h = n+ 1

26 CHRISTOPHER P. BENDEL

Type A2: h = 3
• p = 2: J = {1}

Type A3: h = 4
• p = 2: J = {1, 3}
• p = 3: J = {1, }

Type A4: h = 5
• p = 2: J = {1, 2, 4}
• p = 3: J = {1, 3}

Type A5: h = 6
• p = 2: J = {1, 2, 4, 5}
• p = 3: J = {1, 3, 5}
• p = 5: J = {1}

Type A6: h = 7
• p = 2: J = {1, 2, 3, 5, 6}
• p = 3: J = {1, 2, 4, 6}
• p = 5: J = {1, 3}

Type A7: h = 8
• p = 2: J = {1, 2, 3, 5, 6, 7}
• p = 3: J = {1, 2, 4, 5, 7}
• p = 5: J = {1, 3, 5}
• p = 7: J = {1}

Type Bn:
Type B2: h = 4
• p = 3: J = {2}

Type B3: h = 6
• p = 3: J = {1, 3}
• p = 5: J = {3}

Type Cn:

Type Dn:

Type E6: h = 12
• p = 5: J = {1, 2, 3, 5}
• p = 7: J = {2, 3, 5}
• p = 11: J = {5}

Type E7: h = 18
• p = 5: J = {1, 2, 3, 5, 6, 7}
• p = 7: J = {1, 2, 3, 5, 7}
• p = 11: J = {2, 3, 5}
• p = 13: J = {4, 6}
• p = 17: J = {1}

LIE ALGEBRA COHOMOLOGY 27

Type E8: h = 30
• p = 7: J = {1, 2, 3, 5, 6, 7, 8}
• p = 11: J = {1, 2, 3, 5, 7, 8}
• p = 13: J = {2, 3, 5, 6, 8}
• p = 17: J = {2, 3, 5, 7}
• p = 19: J = {2, 3, 5}
• p = 23: J = {6, 8}
• p = 29: J = {1}

Type F4: h = 12
• p = 5: J = {1, 3, 4}
• p = 7: J = {1, 3}
• p = 11: J = {3}

Type G2: h = 6
• p = 5: J = {1}

References

[BNP] C. Bendel, D. Nakano, and C. Pillen, Second cohomology groups for Frobenius kernels and
related structures, Adv. Math., to appear.

[BC] W. Bosma, J. Cannon, Handbook on Magma Functions, Sydney University, 1996.
[BCP] W. Bosma, J. Cannon, C. Playhoust, The Magma Algebra System I: The User Language, J.

Symbolic Computation, 3/4 no. 24 (1997), 235-265.
[FP] E. M. Friedlander and B. J. Parshall, Cohomology of infinitesimal and discrete groups, Math.

Ann. 273, (1986), 353-374.
[Jan1] J. C. Jantzen, Representations of Algebraic Groups, Academic Press, 1987.
[Jan2] J. C. Jantzen, First cohomology groups for classical Lie algebras, Progress in Mathematics, 95,

Birkhäuser, 1991, 289-315.
[Kos] B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. Math., 74,

(1961), 329-387.
[PT] P. Polo and J. Tilouine, Berstein-Gelfand-Gelfand complexes and cohomology of nilpotent

groups over Z(p) for representations with p-small weights, Astérisque 280, (2002), 97-135.

Department of Mathematics, Statistics and Computer Science, University of Wisconsin-
Stout, Menomonie, WI 54751, USA

E-mail address: bendelc@uwstout.edu

